3070 Fibonacci(O(log n)求解 )

Fibonacci序列可由此公式求出:

[转载]poj <wbr><wbr>3070 <wbr><wbr>Fibonacci(O(log <wbr><wbr>n)求解)

设a={1,1,1,0}

这样Fibonacci(n)可以由:
a^n=a^(n/2)*a^(n/2) (n是偶数)
a^n=a^((n-1)/2)*a^((n-1)/2)*a (n是奇数)
这样和快速幂乘有些相似了,可以O(logn)求出。

快速幂乘代码:

// 快速计算 (n ^ p) % m 的值
__int64 Montgomery(__int64 n, __int64 p, __int64 m)  
{ 
    __int64 r = n % m;
    __int64 k = 1;
    while (p > 1)
    {
        if ((p & 1)!=0)
        {
            k = (k * r) % m;
        }
        r = (r * r) % m;
        p /= 2;
    }
    return (r * k) % m;
}

完整版代码:
#include<iostream>
using namespace std;

void fen(int r[][2], int k[][2]) {
    int ans[2][2];
    ans[0][0] = (r[0][0] * k[0][0] % 10000 + r[0][1] * k[1][0] % 10000) % 10000;
    ans[0][1] = (r[0][0] * k[0][1] % 10000 + r[0][1] * k[1][1] % 10000) % 10000;
    ans[1][0] = (r[1][0] * k[0][0] % 10000 + r[1][1] * k[1][0] % 10000) % 10000;
    ans[1][1] = (r[1][0] * k[0][1] % 10000 + r[1][1] * k[1][1] % 10000) % 10000;
    r[0][0] = ans[0][0], r[0][1] = ans[0][1], r[1][0] = ans[1][0], r[1][1] = ans[1][1];
}

int fbnq(int num) {
    int k[2][2] = {1, 0, 0, 1};
    int r[2][2] = {1, 1, 1, 0};
    while (num > 1) {
        if ((num & 1) != 0) {
            fen(k, r);
        }
        fen(r, r);
        num /= 2;
    }
    fen(r, k);
    return r[0][1];
}

int main() {
    int num;
    while (cin >> num && num != -1) {
        if (num == 0)
            cout << 0 << endl;
        else
            cout << fbnq(num) << endl;
    }
    return 0;
}

由此公式可知:
设矩阵为{x,y,y,z} 根据Fibonacci性质可知:z=x-y;
所以这个矩阵我们每次只需计算一半
x=x*x+y*y;
y=x*y+y*(x-y);
所以有如下简洁代码:
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define mod 10000
int n;

int fibonacci(int n) {
    int ra, rb, a, b, x, y;
    if (n < 2)return n;
    ra = rb = a = b = 1;
    n -= 2;
    while (n) {
        if (n & 1) {
            x = ra * a + rb*b;
            y = ra * b + rb * (a - b + mod);
            ra = x % mod;
            rb = y % mod;
        }
        n >>= 1;
        x = a * a + b*b;
        y = (2 * a + mod) * b - b*b;
        a = x % mod;
        b = y % mod;
    }
    return ra;
}

int main() {
    while (scanf("%d", &n) && n != -1) {
        printf("%dn", fibonacci(n));
    }
}


阅读更多
个人分类: POJ
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭