Machine Learning
文章平均质量分 81
Jemila
水火之中
展开
-
先验概率和后验概率
先验概率和后验概率的区别转载 2016-08-24 09:59:03 · 1110 阅读 · 0 评论 -
pagerank python解析
pagerank 解析加代码原创 2017-09-05 23:38:22 · 1780 阅读 · 0 评论 -
MMR自动摘要 python实现
MMR的全称为Maximal Marginal Relevance ,中文名字为最大边界相关法或者最大边缘相关。它主要是用于提取文本的摘要,这种提取方式与textrank不同,textrank偏向于取全文的重要句子进行排序形成摘要,忽略了其多样性。原创 2017-09-08 10:33:15 · 6738 阅读 · 4 评论 -
bm25 算法
BM25 算法介绍原创 2017-09-10 18:37:12 · 2216 阅读 · 0 评论 -
正负样本不均衡的解决办法
正负样本不均衡的解决办法转载 2017-09-15 16:15:13 · 35501 阅读 · 0 评论 -
互信息和左右熵的新词发现(笔记)
新词推荐学习算法其实很多人都已经知道这个算法了,是由Matrix67牛人提出来的,实现的方式也有很多人解决了。我只是写个最简单的介绍原创 2017-09-19 10:35:31 · 15659 阅读 · 4 评论 -
判断点或者坐标是否在不规则区域内
判断点或者坐标是否在不规则区域内原创 2016-11-09 10:42:24 · 6506 阅读 · 0 评论 -
数据预处理一些笔记
数据预处理分为:数据清洗、数据集成、数据变换,数据规约数据清洗(去除噪声和异常值)异常值常用的检验方法有:聚类,散点图,偏度和峰度值,同时去除一下重复的、不重要的属性和数据数据集成(将不同的来源归纳在同一个数据集中)数据变换(将数据整理为可以挖掘的样式)数据规约1、基于树的方法是不需要进行特征的归一化,例如随机森林等。基于参数的模型或基于距离的模型(线性回归原创 2017-03-02 17:37:51 · 1888 阅读 · 0 评论 -
坐标KNN聚类python实例
最近爬取搜房网上海新房的2000个小区和行政区,对其小区爬了坐标,去掉一些可见的异常点,再进行聚类。原创 2017-03-13 23:59:26 · 8452 阅读 · 6 评论 -
Softmax回归与Logistic回归
逻辑回归和多分类回归转载 2017-03-20 22:35:03 · 1117 阅读 · 0 评论 -
tensorflow +mnist
根据youtube上sendex大神视频所敲写的代码:# -*- coding: utf-8 -*-"""Spyder EditorThis is a temporary script file."""import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist=原创 2017-03-22 00:28:47 · 1063 阅读 · 0 评论 -
各类距离的意义与Python实现
转载来自:http://book.2cto.com/201511/58274.html本节所列的距离公式列表和代码如下:闵可夫斯基距离(Minkowski Distance)欧氏距离(Euclidean Distance)曼哈顿距离(Manhattan Distance)切比雪夫距离(Chebyshev Distance)夹角余弦(Cosine)转载 2017-04-05 09:58:24 · 1785 阅读 · 0 评论 -
卷积神经网络例子
卷积神经网络原创 2017-06-01 13:10:35 · 3155 阅读 · 1 评论 -
验证码的自动识别思路
简单验证码的识别基本步骤:灰度读取、二值化、分割、CNN训练识别原创 2017-05-09 12:40:15 · 4449 阅读 · 0 评论 -
决策树
最近在网络课上报了一门《机器学习》的课,由于数据挖掘的缘故有不少的接触,真正入门才发现坑点不少,也许总结得还不够深,后面会再慢慢补充。一、回归树和决策树决策树可以用来实现回归和分类,用作回归时,则称为回归树;用作决策时,则称为分类树或者决策树。分类树的观测值是离散的,回归树的观测值必须是数值或者是连续的。普通回归和回归树是有区别的,回归树拟合出来的曲线不平滑,即两个测试样本互相靠近...原创 2016-09-03 18:20:07 · 1662 阅读 · 0 评论 -
特征值与特征向量的意义
特征值与特征向量的意义转载 2016-09-19 15:09:00 · 23301 阅读 · 4 评论 -
有监督和无监督
有监督和无监督转载 2016-08-24 10:10:47 · 1961 阅读 · 0 评论 -
相对熵和交叉熵
https://www.zhihu.com/question/41252833转载 2017-10-13 16:38:06 · 1089 阅读 · 0 评论