大模型面经 - 腾讯混元

部门与岗位:TEG - 大模型对齐

一面

  1. 自我介绍,过实习,讲论文,论文过的比较细,有说的笼统的地方面试官会实时进行询问交流
  2. 了解哪些大模型,简要挑一两个介绍一下,当时说了 QwenDeepSeek,然后面试官又问了这两个有什么区别
  3. 接着上一问,为什么大家都开始探索 MoE 架构,MoE 相比 Dense 有什么好处
  4. 在之前实习的时候用 LoRA 微调过 Qwen,于是问了有没有全量微调过,有没有对比过两者的性能表现
  5. 讲一下大模型训练和推理的流程,SFTRLHF 的作用分别是什么
  6. 在 RLHF 中,目前主流的强化学习算法有哪几个,写一下损失函数的表达式
  7. 代码:22. 括号生成
  8. 代码:多头自注意力

一面问的八股还是比较多的,问的也比较细,而且还写了两道代码题,整个面试花的时间也比较多,大概一个半小时左右

二面

  1. 自我介绍,过实习和论文,面试官会一起进行探讨,包括工作的动机、贡献和结果,也会提一些问题和建议
  2. 之前实习用 DeepSpeed 微调过 Qwen2-72B,于是面试官问了 ZeRO-1ZeRO-2ZeRO-3 三个模式的区别
  3. 当时你用 DeepSpeed ZeRO-3 来微调 Qwen2-72B,每一张卡占用的显存大概是多少,估算一下为什么是占这么多的显存
  4. 除了 DeepSpeed,还用过其他的什么优化方法吗
  5. 我看你也用到了 LoRA,知道 LoRA 的原理吗,A 和 B 两个矩阵怎么初始化,有了解过其他的初始化方法吗
  6. 对 RLHF 了解的多吗
  7. 代码:3. 无重复字符的最长子串

二面更多的是结合具体的工作来问的,从用到的东西来引出问题,问的也比较灵活。当然因为部门主要是做对齐的,所以也大概聊了聊 RLHF

三面

  1. 自我介绍,挑一个觉得做的比较好的论文和实习讲一下,面试官问的比较详细,为什么选现在这种方案,为什么 work,其他方案有考虑吗
  2. 在微调 Qwen 的时候,数据是怎么构造的,有用到什么数据清洗方法吗,数据配比是怎么做的
  3. 讲一下 RLHF 的流程,之前有用 RLHF 做过模型对齐吗
  4. 在做对齐的时候,为什么 SFT 之后还要做 RLHF,只用 SFT 可以吗
  5. 知道哪些强化学习算法,除了 PPODPO 这些呢,DeepSeek 用的 GRPO 相比于 GPT 的 PPO 做了哪些改进
  6. 开放题:对目前大模型的发展有什么看法
  7. 代码:零钱的两个题 322. 零钱兑换518. 零钱兑换 II

三面面试官更聚焦于对齐这一块的内容,考的比较深。由于之前没有接触过强化学习,答得还是比较吃力的,不过面试官还挺好的,会一起讨论来做引导

四面

  1. 自我介绍,过论文和实习,问的也比较细,这里能明显的感受出来面试官的视角更系统,会把这些工作串起来问
  2. 我看你简历上没写 RLHF,平常有用过 RLHF 吗
  3. 推导一下神经网络反向传播的过程
  4. 一道排列组合的概率题
  5. 开放题:你觉得大模型目前还有哪些可以改进的点

四面整体更看重思维和基础,没有考察什么八股

总结

型目前还有哪些可以改进的点

四面整体更看重思维和基础,没有考察什么八股

总结

一共四轮技术面,整体来说强度比较大,对于大模型八股的考察比较细,对大模型的理解问的也比较深刻,包括一些数理逻辑基础,考察的比较全面

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

1.学习路线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述
👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

### IoT硬件开发试经验 对于IoT硬件开发岗位的试,候选人不仅需要掌握基本的电子电路设计原理和嵌入式编程技能,还需要具备处理实际项目中的各种挑战的能力。在准备这类职位的试时,可以从以下几个方着手: #### 1. 基础理论知识 深入理解微控制器的工作机制、传感器接口技术以及无线通信模块的应用是必不可少的基础。例如,在对具体应用场景时如何选择合适的MCU型号及其外设资源分配方案;熟悉SPI/IIC等常见串行总线协议的操作方式。 #### 2. 实际操作能力 除了笔试之外,很多公司还会安排动手实践环节来考察应聘者的实战水平。这可能涉及到PCB板的设计与焊接、编写简单的固件程序实现特定功能或是搭建小型网络节点之间的数据传输链路等内容[^2]。 #### 3. 调试技巧 当遇到设备无法正常工作的情况时,能否快速有效地找到原因至关重要。因此要学会运用逻辑分析仪、示波器之类的工具辅助排查故障点所在位置,并通过调整参数设置或修改代码逻辑解决问题。 #### 4. 安全意识 随着越来越多敏感信息被上传至云端存储空间内,保障整个系统的安全性变得越来越重要。了解TLS/SSL加密算法的作用机理及其与其他主流物联网通讯标准(比如MQTT, CoAP)相结合的方式有助于增强个人竞争力[^3]。 ```c++ // 示例:使用MBED库初始化Wi-Fi连接并发送HTTP请求获取远程服务器时间戳 #include "mbed.h" #include "EthernetInterface.h" int main() { EthernetInterface eth; eth.connect(); TCPSocket socket; SocketAddress addr("time.nist.gov", 80); socket.open(&eth); socket.connect(addr); char send_data[] = "GET / HTTP/1.1\r\nHost: time.nist.gov\r\nConnection: close\r\n\r\n"; socket.send(send_data, strlen(send_data)); char recv_data[100]; int bytes_received = socket.recv(recv_data, sizeof(recv_data)); printf("Received %d bytes from server:\r\n%s", bytes_received, recv_data); socket.close(); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值