想高薪!0基础怎么转行做AI,收藏这篇文章就够了。

AI的兴起,正带动着各个行业的变革,很多传统重复性的工作正在被取代,面对AI大趋势,普通大学生该如何改变自己才能快速进入AI领域呢?今天我们来一起探讨一下。

img

首先,定位好自己大学所学的专业与计算机是否有关联,然后分为两类:

  1. 技术背景学生(如计算机、数学):可直接聚焦算法、模型开发等技术岗位,强化Python、数学基础(线性代数、概率论)和框架学习(如PyTorch)。

2.非技术背景学生(如商科、文科):可转向AI产品经理、行业解决方案专家等岗位,需结合原专业领域知识(如金融+AI风控、教育+智能教学系统)。

当然以上也不绝对,还是根据个人兴趣来决定选择技术/非技术的。

根据个人兴趣,AI相关的岗位分为三类:

  • 技术岗:算法工程师、数据科学家(需编程+数学能力);
  • 应用岗:AI产品经理、AI运营(需工具使用+行业理解);
  • 新兴岗位:AI伦理师、大模型训练师(门槛较低,适合初期过渡)。

看完上面内容 ,基本上对自己已经有了明确的定位和方向了,然后再来规划学习路径。AI学习积累知识库,提升综合素质,才是入门的第一步。

对技术性AI岗位****感兴趣的看下面的4步(非技术岗的可以直接略过,看下面非技术岗的介绍)

第一步:基础技能(会比较枯燥但很重要

数学基础和编程语言,不要求精通,但是要理解基本的实现原理。

  1. 数学基础

    • 线性代数:矩阵运算、特征值分解(推荐:3Blue1Brown《线性代数的本质》视频)
    • 概率论:贝叶斯定理、概率分布(教材:《概率导论》Dimitri P. Bertsekas)
    • 微积分:梯度下降原理、链式法则(快速回顾大学教材)
  2. 编程入门

    • Python核心语法:数据类型、函数、面向对象编程(平台:Codecademy/《Python Crash Course》)
    • 数据处理工具:Numpy(矩阵运算)、Pandas(数据清洗)、Matplotlib(可视化)
    • 必做项目:用Pandas分析公开数据集(如Titanic生存率)

以上👆🏻内容,不用精通和梳理,只需理解部分原理即可,比如:知道数学里函数要解决的问题,不需要熟练使用函数;理解编码中技术实现的逻辑。

如果以上你能坚持下来并能基本理解,那么恭喜你,已经打败了50%的人了。

第二步:理解机器学习里的算法和实现

  1. 算法原理

    • 监督学习:线性回归、决策树、SVM(参考:吴恩达《机器学习》Week1-3)。
    • 无监督学习:K-Means、PCA(《机器学习》周志华第9、10章)。
    • 模型评估:交叉验证、ROC曲线、混淆矩阵。
  2. 实战工具

    • Scikit-learn:完成分类/回归全流程(数据预处理→模型训练→评估)。
    • Kaggle入门赛:Titanic生存预测、房价预测(学习Top10解决方案思路)。
  3. 必做项目

    • 使用Scikit-learn构建信用卡欺诈检测模型(数据集:Kaggle Credit Card Fraud)。
    • 复现经典论文《A Few Useful Things to Know About Machine Learning》中的调优技巧。

第三步:理解神经网络的原理和框架

  1. 核心知识

    • 神经网络基础:前向传播、反向传播、激活函数(推荐:CS231n课程)。
    • CV方向:CNN架构(ResNet、YOLO)、数据增强。
    • NLP方向:RNN、Transformer、BERT(参考:《动手学深度学习》李沐)。
  2. 框架实战

    • PyTorch:张量操作、自定义数据集、模型部署(教程:PyTorch官方Tutorials)。
    • TensorFlow:Keras API快速建模(案例:MNIST手写数字识别)。
  3. 必做项目

    • 使用PyTorch实现图像分类(数据集:CIFAR-10)。
    • 基于Hugging Face库微调BERT模型完成文本分类(数据集:IMDB影评)。

如果以上你能坚持下来并能基本理解,那么恭喜你,已经打败了90%的人了。

第四步:了解大模型和行业应用

  1. 大模型技术栈

    • 架构理解:Transformer工作原理、注意力机制(论文:《Attention Is All You Need》)。
    • 微调技术:LoRA、Prompt Engineering(实践:使用ChatGLM-6B进行指令微调)。
    • 部署优化:模型量化、ONNX格式转换。
  2. 行业结合案例

    • 金融领域:用LSTM预测股票趋势(注意:仅限技术验证,非真实投资)。
    • 医疗领域:基于U-Net的医学影像分割(数据集:ISBI细胞分割挑战赛)。
  3. 必做项目

    • 使用LangChain构建行业知识问答系统(如法律条文查询助手)。
    • 参与天池大赛“电商用户购买预测”竞赛,优化XGBoost与深度学习融合模型。

对非技术性AI岗位****感兴趣的看下面的3步(技术岗的可以直接略过,看上面技术岗的介绍)

第一步:熟练使用AI工具

  1. 工具选择与实践

    • 文本生成:DeepSeek、通义千问、ChatGPT、文心一言、(练习指令优化与多轮对话);
    • 图像/视频生成:即梦AI、可灵AI、Stable Diffusion(学习风格关键词与构图控制);
    • **数据分析:**Tableau+AI插件、ChatGPT数据分析功能(生成图表与趋势预测);
  2. 核心技能

    • Prompt工程:掌握“角色设定+任务描述+约束条件”的指令结构(如“作为市场营销专家,生成10条针对Z世代用户的社交媒体文案,要求语言活泼并包含emoji”)。
    • 结果优化:通过迭代反馈调整指令,例如添加示例、细化参数(如分辨率、画风)。

第二步:结合行业定制AI应用(AI Agent

  1. 行业知识融合

    • 知识库配置:使用天工AI、Coze平台搭建专属知识库,限制AI回答范围(如法律咨询、医疗问答);
    • 插件扩展:调用天气查询、股票数据等外部API增强AI功能。
    • 案例学习:研究AI在自身领域的成功案例(如教育行业的智能题库生成、电商的AI客服)。
    • 工具进阶
  2. 工作流设计

    • 自动化流程:通过工具链串联多步骤任务(如“用户提问→AI生成回复→人工审核→自动发送”);
    • 数据闭环:建立反馈机制优化AI表现(如收集用户对生成内容的评分,迭代模型)。

第三步:项目验证AI Agent并探索商业价值

  1. 项目实战

    • 微创新产品:用AI工具开发小型应用(如基于GPT的行业问答小程序、AI辅助写作工具);
    • 竞赛参与:加入低代码AI开发平台(如Coze、扣子)的社区挑战赛,积累作品集。
  2. 变现路径

    • 内容变现:通过AI生成优质图文/视频内容,在自媒体平台获取流量收益;
    • 服务接单:在自由职业平台(如Upwork)承接AI优化、Prompt设计等任务。

好了,技术和非技术的学习内容就分享到这里了,下面做一下两点的对比

对比维度技术性方向非技术性方向
目标岗位算法工程师、深度学习研究员、大模型训练师AI产品经理、AI运营专家、AI伦理师
核心技能- 编程(Python、C++) - 数学(线性代数、概率论) - 深度学习框架(PyTorch、TensorFlow)- AI工具应用(ChatGPT、Midjourney) - 行业知识融合 - 产品设计与需求分析
学习路径1. 数学基础 → 传统机器学习 → 深度学习 → 大模型技术 2. 参与Kaggle竞赛 → 复现顶级论文 → 模型部署优化1. AI工具入门 → Prompt工程 → 行业场景应用 2. 学习产品管理 → 设计AI解决方案 → 商业化验证
工具与资源- 编程工具:Jupyter、VS Code - 框架:PyTorch、Hugging Face - 竞赛平台:Kaggle、天池- 生成工具:GPT-4、DALL-E、Stable Diffusion - 低代码平台:Coze、扣子 - 数据分析工具:Tableau+AI插件
项目经验- 图像分类模型(CIFAR-10) - BERT文本分类微调 - 大模型RAG系统开发- 用AI生成营销文案/设计图 - 搭建行业知识问答机器人 - AI+教育/医疗解决方案设计
学习周期8-12个月(需系统学习数学与编码)3-6个月(侧重工具应用与场景实践)
学习资源- 书籍:《深度学习》(Goodfellow) - 课程:吴恩达《机器学习》- 课程:《AI For Everyone》(吴恩达) - 工具导航:AI万花筒、Toolify.ai
职业发展路径初级算法工程师 → 高级研究员 → 首席科学家AI产品助理 → 行业解决方案专家 → AI业务负责人

| - 课程:《AI For Everyone》(吴恩达) - 工具导航:AI万花筒、Toolify.ai |
| 职业发展路径 | 初级算法工程师 → 高级研究员 → 首席科学家 | AI产品助理 → 行业解决方案专家 → AI业务负责人 |

好了,今天的知识分享就到这里了,希望能帮助到你,如果你喜欢这篇文章可以点个关注哦~ ↓

在这里插入图片描述

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

内容包括:项目实战、面试招聘、源码解析、学习路线。

img

imgimgimgimg
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述
👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值