Qwen-3 微调实战:用 Python 和 Unsloth 打造专属 AI 模型

虽然大家都忙着在 DeepSeek 上构建应用,但那些聪明的开发者们却悄悄发现了 Qwen-3 的微调功能,这可是一个隐藏的宝藏,能把通用型 AI 变成你的专属数字专家。

通过这篇文章,你将学到如何针对特定用途微调最新的 Qwen-3 模型。无论是刚刚踏入 AI 领域的初学者,还是经验丰富的 AI 工程师,这篇文章都有适合你的内容。

None
Qwen3 很快就成为了大多数开发者的首选。它之所以如此受欢迎,是因为它在编码、数学、通用能力等竞争性评估中获得的基准分数。

这些基准分数超过了主要的 LLM,包括 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 等模型。此外,小 MoE 模型 Qwen3–30B-A3B 在激活参数数量上是 Qwen-32B 的 10 倍,甚至一个像 Qwen3–4B 这样的小模型也能与 Qwen2.5–72B-Instruct 的性能相媲美。

None

Qwen-3 模型基准

你可以从 这里 了解更多关于基准及其在特定任务中的表现。

在这篇文章中,你将深入了解如何使用 Python 和 Unsloth 对 Qwen-3 模型进行微调。

尽管微调是一个计算成本高昂的任务,但这篇文章通过使用 Google 的 Colab Notebook,尽量使其变得易于访问。

条件和设置

让我们先了解微调 Qwen-3 需要什么。这包括技术要求和设置要求的简要介绍。

Python库和框架

以下是微调 Qwen-3 模型所需的 Python 库和框架:

  • unsloth,这个包能让像 Llama-3、Mistral、Gemma 和 Qwen 这样的大型语言模型的微调速度翻倍,内存使用减少 70%,而且不会降低准确性!你可以在这里了解更多 详情
  • torch,这个包是使用 PyTorch 进行深度学习的基础。它提供了一个强大的张量库,类似于 NumPy,但增加了 GPU 加速的优势,这对于处理 LLM 来说至关重要。
  • transformers 是一个强大且流行的开源自然语言处理(NLP)库。它为各种最先进的预训练模型提供了易于使用的接口。由于预训练模型是任何微调任务的基础,这个包有助于轻松访问训练好的模型。
  • trl 包是一个专门用于 强化学习(Reinforcement Learning, RL) 与变换器模型的 Python 库。它基于 Hugging Face 的 transformers 库构建,利用其优势,使变换器的强化学习更加易于访问和高效。
计算需求

微调大型语言模型(LLM)是一种技术,可以在不进行完整(参数)训练的情况下,使模型的响应更加结构化和特定于领域。

然而,对于大多数普通计算机硬件来说,微调大型 LLM 仍然不可行,因为所有的可训练参数以及实际的 LLM 都存储在 GPU 的 vRAM(虚拟 RAM)中,而 LLM 的巨大尺寸是实现这一目标的主要障碍。

因此,为了这篇文章,我们将微调 Qwen-3 的量化版本,该版本有 80 亿参数。这个 LLM 需要大约 8-12 GB 的 vRAM,为了使所有学习者都能访问,我们将使用 Google Colab 的免费 T4 GPU,它有 15 GB 的 vRAM。

数据准备策略

对于微调 LLM,我们需要结构化和特定于任务的数据。有许多数据准备策略,无论是从社交媒体平台、网站、书籍还是研究论文中抓取数据。

对于微调我们的 Qwen-3 模型,我们将使用推理数据集和通用聊天交互数据集。这样,我们将为我们的 LLM 赋予增强的推理能力和改进的提示理解能力。

这两个数据集将从开源的 Hugging Face Hub 加载。我们将使用 unsloth/OpenMathReasoning-minimlabonne/FineTome-100k 数据集。

在这里,unsloth/OpenMathReasoning-mini 将增强我们模型的推理和解决问题的能力,而 mlabonne/FineTome-100k 将提高通用对话能力。

Python实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值