hdu6052 To my boyfriend 枚举

55 篇文章 0 订阅
6 篇文章 0 订阅
题目: http://acm.hdu.edu.cn/showproblem.php?pid=6052

题意:矩阵上每个点有不同的颜色,求矩阵的子矩阵中不同颜色个数的期望

考虑每个颜色的贡献,即每个颜色只能对一个子矩阵贡献一次,从颜色的角度来考虑,考虑一个顺序,每个点只能和其颜色相同的并且位置在其左上角的点冲突,这样就可以保证不重复了,然后直接暴力就可以了

#include<bits/stdc++.h>
using namespace std;
int a[105][105];
int book[10005][105];
int main()
{
    int T,n,m,i,j,k;
    cin>>T;
    while(T--)
    {
        cin>>n>>m;
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=m;j++)
            {
                scanf("%d",&a[i][j]);
                book[a[i][j]][i]=1;//标记了这一行有没有此颜色出现
             }
        }
        double ans=0;
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=m;j++)
            {
                int now=a[i][j];
                int up=n,down=i,le=1,ri=m;
                for(k=j-1;k>=1;k--)
                {
                    if(a[i][k]==now)
                    {
                        le=k+1;
                        break;
                    }
                }
                ans+=(up-down+1)*(j-le+1)*(ri-j+1);//上边界为此行时,不需要考虑右边的点
           //     cout<<i<<" "<<j<<" "<<le<<" "<<ri<<" "<<down<<" "<<up<<" "<<ans<<endl;
                for(down=i-1;down>=1;down--)//向上枚举上边界,不断修改左右可到的边界,范围只可能越来越小,
                {
                    if(book[now][down])//如果此行没有此颜色出现,则不需要修改左右的边界,一个小优化,不加也能过(500ms)加了(90ms)
                    {
                        for(k=j;k>=le;k--)
                        {
                            if(a[down][k]==now)
                            {
                                le=k+1;
                                break;
                            }
                        }
                        for(k=j;k<=ri;k++)
                        {
                            if(a[down][k]==now)
                            {
                                ri=k-1;
                                break;
                            }
                        }
                    }
                    if(le>ri)
                    break;
                //    cout<<i<<" "<<j<<" "<<le<<" "<<ri<<" "<<down<<" "<<up<<" "<<ans<<endl;
                    ans+=(j-le+1)*(ri-j+1)*(up-i+1);//上边界已确定,并且矩阵必须包含原点
                }
            }
        }
        ans/=(n+1)*n*(m+1)*m/4.0;
        printf("%.9lf\n",ans);
        memset(book,0,sizeof(book));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值