This passage adopts a sequential learning strategy in a bit-wise manner.
Problem Definition
datapoints
X=[x1;x2;...;xn]T∈ℛn×d
,where d is the dimensionality of the data points.
We use c binary hash functions
{hk(⋅)∣k=1,2,...,c}
to compute the binary code of
xi
, i.e.,
bi=[h1(xi),h2(xi),...,hc(xi)]T
Sij=e−∥xi−xj∥2Fρ
,donote the similarity in the original space. where
ρ>0
Objective function
min∑i,j=1n(S˜ij−1cbTibj)2
where
S˜ij=2Sij−1
According to KSH we define the hash function for the k-th bit of bi as follows:
hk(xi)=sgn(∑j=1mWkjϕ(xi,xj)+biask)
where W∈ℛc×m is the weight matrix , ϕ(xi,xj) is a kernel function, m denotes the number of kernel bases. In fact, the above function can be written as hk(x)=sgn(K(x)wk) where wk=WTk∗ where Wk∗ reprensents the k row of W ,
So we can get the object function with the parameter W as :