SGH-hashing

This passage adopts a sequential learning strategy in a bit-wise manner.

Problem Definition
datapoints X=[x1;x2;...;xn]Tn×d ,where d is the dimensionality of the data points.
We use c binary hash functions {hk()k=1,2,...,c} to compute the binary code of xi , i.e., bi=[h1(xi),h2(xi),...,hc(xi)]T
Sij=exixj2Fρ ,donote the similarity in the original space. where ρ>0
Objective function

mini,j=1n(S˜ij1cbTibj)2
where S˜ij=2Sij1
According to KSH we define the hash function for the k-th bit of bi as follows:
hk(xi)=sgn(j=1mWkjϕ(xi,xj)+biask)

where Wc×m is the weight matrix , ϕ(xi,xj) is a kernel function, m denotes the number of kernel bases. In fact, the above function can be written as hk(x)=sgn(K(x)wk) where wk=WTk where Wk reprensents the k row of W ,K(x)1×m.
So we can get the object function with the parameter W as :
mincS˜sgn(K(X)WT)sgn(K(X)WT)T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值