003-机器学习背后的思维-针对入门小白的概念算法及工具的朴素思考

作者:燕志伟
修订时间:2020-06-21
版权:原创

2.1 概念层次的划分

概念层次的划分包括三个方面:数据输入,数据输出和问题的复杂度。 依照数据 的输入来划分「场景型」概念, 依照数据的输出来划分「任务型」概念, 依照问题的 复杂度来划分「方法型」概念。 如图1所示,

在这里插入图片描述

1.) 首先, 从输入的数据(Input)来划分场景。 机器学习中概念是通过已有的数据 来区分学习的场景(Scenario)。 先看输入数据的整体, 根据是否所有的输 入数据都被手工标注过, 分为监督学习(Supervised Learning)和非监督学习 (Unsupervised Learning)。 如果有部分数据被标注过,部分数据未被标记过, 称为半监督学习(Semi-supervised Learing)。 如果在输入数据中, 部分和本 次任务有关,部分无关, 被称为迁移学习(Transfer Learning)。 如果数据实 时采样,且有任务成败的判断规则, 完全由规则来确定结果,可称之为增强 学习(Reinforcement Learning)。

2.) 其次,从输出的结果(Output)或是学习的目的来划分任务(Task)。 如果输出 结果是一个标量(Scalar), 称之为回归(Regression)。 如果输出结果是一 些离散的值, 称之为分类(Classification)。 如果输出结果是个复杂向量或 矩阵(Matrix)或高阶矩阵(张量Tensor), 称之为(Structure Learning)。 Structure Learning 任务的例子, 包括中英文的机器翻译, 人的语音到文字的 识别,生成一首歌词, 生成一张世界上不存在的人的头像等等 1

3.) 最后, 根据问题的复杂性可分为线性模型(Linear Model)和非线性模型 (Non-Linear Model)。 线性模型中最常见就是线性回归模型。 而非线性模型 则包括黑盒模型, 如神经网络模型, 深度神经网络模型(Deep Learning), 以及灰盒、白盒模型,如SVM,Decision Tree,K-NN等。

上面这种划分概念的方法, 就是根据你有什么数据,想做什么的任务(输出什么 样的结果), 然后设计一个线性或非线性的模型。 对于非线性的模型,你可使用黑盒 的方式, 通过计算机强大的算力和足够多的输入数据, 让算法自己去学习模型中参数 的具体取值; 也可以采用白盒的方式, 人们手工设计输入数据特征,数据变换的方 法, 来得到模型中事先定义好的有意义的模型参数的具体取值。

下面我们来举个通俗的例子来解释上面概念的划分方法。 假设,你的任务是要识 别图片中的动物是猫还是狗。 你收集了 10,000 张图片,都是猫和狗的, 也请人标记了 每一张是猫或是狗,你这个场景就属于监督学习。 如果你经费紧张,请人标记了其中 5,000 张,场景就变成了半监督学习。

迁移学习的例子稍微复杂一点。 你的任务还是要识别图片中动物是猫或是狗。 与 上面不同的是,你得到了一个 10,000 张种类繁多的图片集合。 你打开一些图片文件看 了一下,乱七八糟的,有猫、狗、大象、老虎, 甚至还有卡通人物,如一休哥的,蝙 蝠侠、钢铁侠、蜘蛛侠的。 你没有经费,只能自己标记, 标记了20 分钟时间,一共 标记了410张图片, 其中 200 张是狗,100 张是猫, 50 张是大象、50 张是老虎, 10 张 是一休哥的。 然后, 你觉得太过无聊不标记了。 那么根据当前的输入数据情况, 你遇到的场景是迁移学习。 注意,迁移学习场景中隐含了一个意思,就是你要使用所有 10,000 张图片, 那些没有标记的图像,甚至是与任务目标无关的图片也可以对完成任 务有帮助。 这个可以理解为,我们小时候,并不是看到的所有的东西,都会有人给你 指正, 有时虽然看到东西不知道是什么, 但是对于分辨已知的东西, 仍旧是有帮助 的。 这是因为人们生活中,存在另一种学习方式: 通过事物之间的不同点来更深刻地 理解事物本身。 如果我们对老虎或其它东西的样子更加清晰, 会使得对猫的认知更加 准确。

以上介绍的是输入数据有人工标注的情况,下面介绍无监督学习的场景。 就是其 中心思想是让机器无师自通,在没有直接反馈及帮助的情况下学习。 把这 10,000 张没 标记过的图片,统统让它看一遍, 可能它会把猫、狗、老虎认为一类事物, 而一休, 蝙蝠侠,钢铁侠是一类事物。 这个例子一般称为聚类。 这个例子当前不是太好,这要 和具体的任务相结合。

最后我们提一下增强学习。

增强学习的特点与遗传算法有点像,都是要多步以后才能看到效果。 增强学习的 例子, 当前研究集中在打游戏, 包括电子游戏或是围棋类的游戏。 这类场景的特点 是:周围环境不是太复杂,而且规则比较明确。 机器与环境互动,做出一系列决策, 在最后才知道任务的成败。 因为决策次数太多以及环境的随机反馈, 所以不太可能回 溯每一次决策和每一个步骤。 这样的场景通常可以归为增强学习场景。 还拿打游戏 来做比喻,增强学习是第一人称的游戏,你看的世界就是周围的世界, 你不太能注意 到自身。而监督学习是拿了超级权限或开了外挂的第三人称游戏, 并且,你还可能拥 有后台数据库读取权限。 你能够以这种大 Boss 的第三者视角来看待游戏中的各种决 策, 即是上帝视角。游戏的角色的行为一举一动,你都知道其结果的对错。

再举一个不是太恰当的例子, 增强学习有点类似我们大学毕业后,在真实社会中 的学习。 没有人可以给你随时随地地指正你,今天这点做的对,继续保持; 那一点太 糟糕,要改进。 通常的情况是, 你忙碌了一个月、几个月的项目,甚至一整年, 得 到的是一个非零即一的结果。 幸运的话, 努力没白费, 成功了。 不幸的话, 项目失 败了。 无论成功与否,你都可以回头复盘。 你可以回想到当时的一些决策情况。 但 是,大量的细小的决策基于于当时决策前的环境, 可能包括各种因素,有形的,无形 的,你可能都想不起来了。 这时,你如何总结成功的经验或失败的教训呢? 我想如果 增强学习能够发展起来的话,那么可能机器真是有了些智慧呢。

读到这里,我想问大家一个问题:如果一个问题被归为监督学习场景, 那么是否 还可以使用所谓的增强学习方法?想一下?

······

对于监督学习和增强学习这两个概念,是针对场景而言的。 其划分标准是输入数据的情况。监督学习的输入数据都会请人提前做标注好, 而增强学习的数据是训练过 程中,一边训练,一边收集到的,没有人标注它。 所以, 如果一个输入数据已经被归 为监督学习的场景,那么就不能再归为其它的场景。 每一个场景都是独立的,他们之 间本质上是没有交集的。 换句话说,适用于监督学习场景的方法,通常在其它场景中 不会有好效果。 反过来,也一样。所以,上面问题的答案是:不行。

004-机器学习背后的思维-针对入门小白的概念算法及工具的朴素思考


  1. 建议你点开这个网址感觉一下 Nvidia 公司的算法实力。https://thispersondoesnotexist.com/ ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值