清华大学智能驾驶课题组(iDLab)在 ICML 2025 (Spotlight, Top 2.6%) 发表了最新研究成果《LipsNet++: Unifying Filter and Controller into a Policy Network》。
在具身智能领域,神经网络控制器普遍存在动作震荡问题,震荡的动作信号导致零件磨损、性能下降和安全风险,是具身智能落地应用的重要挑战。该论文创新提出了两类具有滤波功能的神经网络层结构:一是具有状态观测滤波能力的“Fourier滤波层”,二是具有策略函数平滑拟合能力的“Lipschitz控制层”,分别用于解决动作震荡的两大核心成因。基于上述结构,论文构建了面向具身智能、自动驾驶等任务的平滑神经网络LipsNet++,作为强化学习的策略网络使用。该网络作为LipsNet网络(ICML 2023)的增强版,简单有效地提升了控制动作平滑性。
微信推送:https://mp.weixin.qq.com/s/b30Hpqhg_JCHhoNBYYgETA
项目主页:https://xjsong99.github.io/LipsNet_v2/
1003

被折叠的 条评论
为什么被折叠?



