AdaBoost详解

本博客内容摘自李航老师的《统计学习方法》,加以一些整理。

相关概念

  提升(boosting)方法是一种常用的统计学习方法,应用广泛且有效。在分类问题中,它通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能。

  对于分类问题而言,给定一个训练集,求比较粗糙的分类规则(弱分类器)要比求精确的分类规则(强分类器)容易得多。提升(booting)方法就是从弱学习算法出发,反复学习,得到一系列弱分类器(又称为基本分类器),然后组合这些弱分类器,构成一个强分类器。大多数的提升方法都是改变训练数据的概率分布(训练数据的权值分布),针对不同的训练数据分布调用弱学习算法学习一系列弱分类器。

  所以对于提升方法而言,有两个问题需要解决:一是在每一轮如何改变训练数据的权值或者概率分布;二是如何将弱分类器组合成一个强分类器。

  对于第一个问题,AdaBoost的做法是,提高那些被前一轮弱分类器错误分类样本的权值,而降低那些被正确分类样本的权值。这样一来,那些没有得到正确分类的数据,由于其权值的加大而受到后一轮的弱分类器的更大关注。于是,分类问题被一系列的弱分类器”分而治之”。

  对于第二个问题,即弱分类器的组合,AdaBoost采取加权多数表决的方法。具体地,加大分类错误率小的弱分类器的权重,使其在表决中起较大的作用,减少分类误差率大的弱分类器的权值,使其在表决中起较小的作用。

AdaBoost算法

  假定给定一个二分类的训练数据集:

T={(x1,y1),(x2,y2),...,(xN,yN)} T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) }

其中,每个样本点由实力和标记组成。实例 xiXRn x i ∈ X ⊆ R n (表示实数),标记 yiY={1,+1} y i ∈ Y = { − 1 , + 1 } ,即有两种标签的数据,用 {1,+1} { − 1 , + 1 } 来表示这两种类别; X X 是实例空间,Y是标记集合。AdaBoost算法利用以下算法,从训练数据中学习一系列弱分类器或基本分类器,并将这些弱分类器线性组合成一个强分类器。

AdaBoost描述:
  输入:训练数据集 T={(x1,y1),(x2,y2),...,(xN,yN)} T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } ,其中 xiXRn,yiY={1,+1} x i ∈ X ⊆ R n , y i ∈ Y = { − 1 , + 1 } ;得到弱学习算法;
  输出:最终分类器 G(x) G ( x )

算法步骤:

(1)初始化训练数据的权值分布

D1=(w11,...,w1i,...,w1N),w1i=1N,i=1,2,...,N(2.1) D 1 = ( w 11 , . . . , w 1 i , . . . , w 1 N ) , w 1 i = 1 N , i = 1 , 2 , . . . , N ( 2.1 )

D是用来描述各样本的权值分布的。

(2) m=1,2,...,M m = 1 , 2 , . . . , M m m 表示迭代的次数
  (a)使用具有权值分布Dm的训练数据集学习,得到基本分类器:

Gm(x):X{1,+1} G m ( x ) : X ⟶ { − 1 , + 1 }

   (b)计算 Gm G m 在训练数据集上的分类误差率
em=P(Gm(xi)yi)=i=1NwmiI(Gmyi)(2.2) e m = P ( G m ( x i ) ≠ y i ) = ∑ i = 1 N w m i I ( G m ≠ y i ) ( 2.2 )

其中 I(Gmyi)={0,1} I ( G m ≠ y i ) = { 0 , 1 } ,当分类正确时,等于0;分类错误时,等于1; Gm(xi) G m ( x i ) 表示第 m m 轮得到的弱分类器Gm对第 i i 个样本xi的分类结果, yi y i 表示第 i i 个样本的真实类别。注意计算误差率是用到了权重分布D中的 wm w m
   (c) 计算 Gm(x) G m ( x ) 的系数
αm=12log1emem(2.3) α m = 1 2 l o g 1 − e m e m ( 2.3 )

这里的对数是自然对数。可以发现,当错误率 em e m 越大时, am a m 越小。这个参数将会用在集成阶段。
   (d)更新训练数据集的权值分布
Dm+1=(wm+1,1,...,wm+1,i,...,wm+1,N)(2.4) D m + 1 = ( w m + 1 , 1 , . . . , w m + 1 , i , . . . , w m + 1 , N ) ( 2.4 )

wm+1,i=wmiZmexp(αmyiGm(xi)),i=1,2,...,N(2.5) w m + 1 , i = w m i Z m e x p ( − α m y i G m ( x i ) ) , i = 1 , 2 , . . . , N ( 2.5 )

这里, Zm Z m 是规范化因子,使得总的 wm+1 w m + 1 值和为1.
Zm=i=1Nwmiexp(αmyiGm(xi))(2.6) Z m = ∑ i = 1 N w m i e x p ( − α m y i G m ( x i ) ) ( 2.6 )

它使得 Dm+1 D m + 1 成为一个概率分布。

(3)构建基本分类器的线性组合

f(x)=m=1MαmGm(x)(2.7) f ( x ) = ∑ m = 1 M α m G m ( x ) ( 2.7 )

错误率越低的弱分类器对应的 α α 值越大,使其在表决中起较大的作用。
得到最终的分类器
G(x)=sign(f(x))=sign(m=1MαmGm(x))(2.8) G ( x ) = s i g n ( f ( x ) ) = s i g n ( ∑ m = 1 M α m G m ( x ) ) ( 2.8 )

对AdaBoost算法作如下说明:
  步骤(1)假设训练数据集具有均匀的权值分布,即每个训练样本在基本分类器的学习中作用相同,这一假设保证第1步能够在原始数据上学习基本分类器 G1(x) G 1 ( x ) .

  步骤(2)AdaBoost反复学习基本分类器,在每一轮 m=1,2,...,M m = 1 , 2 , . . . , M 顺次地执行下列操作:
  (a)使用当前分布 Dm D m 加权的训练数据集,学习基本分类器 Gm(x) G m ( x ) .
  (b)计算基本分类器 Gm(x) G m ( x ) 在加权训练数据集上的分类错误率:

em=P(Gm(xi)yi)=Gm(xi)yiwmi(2.9) e m = P ( G m ( x i ) ≠ y i ) = ∑ G m ( x i ) ≠ y i w m i ( 2.9 )

这里, wmi w m i 表示第 m m 轮中第i个实例的权值, Ni=1wmi=1 ∑ i = 1 N w m i = 1 .这表明, Gm(x) G m ( x ) 在加权的训练数据集上的分类错误率是被 Gm(x) G m ( x ) 误分类样本的权值之和,由此可以看出数据权值分布 Dm D m 与基本分类器 Gm(x) G m ( x ) 的分类错误率的关系。
  (c)计算基本分类器 Gm(x) G m ( x ) 的系数 αm,αm α m , α m 表示 Gm(x) G m ( x ) 在最终的分类器中的重要性。由式子(2.3)可知,当 em12 e m ≤ 1 2 时, αm0 α m ≥ 0 ,并且 αm α m 伴随着 em e m 的减小而增大,所以分类误差率越小的基本分类器在最终分类器中的作用越大。
  (d)更新训练数据的权值分布,为下一轮作准备。式子(2.5)可以写成:
wm+1,i={wmiZmeαm,wmiZmeαm,Gm(xi)=yiGm(xi)yi w m + 1 , i = { w m i Z m e − α m , G m ( x i ) = y i w m i Z m e α m , G m ( x i ) ≠ y i

由此可知,被基本分类器 Gm(x) G m ( x ) 误分类样本的权值得以扩大,而被正确分类样本的权值却得以缩小。二者比较,误分类样本的权值被放大 e2αm=em1em e 2 α m = e m 1 − e m 倍.因此,误分类样本在下一轮学习中起更大的作用。 不改变所给的训练数据,而不断改变训练数据的权值分布,使得训练数据在基本分类器的学习中起不同的作用,这是AdaBoost的一个特点。

  步骤(3)线性组合 f(x) f ( x ) 实现了 M M 个基本分类器的加权表决。系数αm表示了基本分类器 Gm(x) G m ( x ) 的重要性,这里,所有 αm α m 之和并不为1. f(x) f ( x ) 的符号决定实例 x x 的类,f(x)的绝对值表示分类的确信度,利用基本分类器的线性组合构建最终分类器是AdaBoost的另一特点。

参考例子

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

注意,权值分布是在计算错误率 e e <script type="math/tex" id="MathJax-Element-74">e</script>时起作用,公式(2.2)中。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值