一、玛雅游戏(开心消消乐)
分析
1.搜索顺序:每一步依次枚举操作哪个格子,再枚举向哪个方向移动。
2.剪枝:
(1)如果某种颜色只有1个或2个小方块,则直接回溯。
(2)枚举向左移动时,如果左边有方块,则直接回溯。
解释:若右边的方块向左移,可以表示为(x, y, -1);而左边的方块向右移,可以表示为(x-1, y, 1)。由字典序排序可知,从左往右移动的方案永远排在前面。
(3)错误的剪枝:向右移动时,如果右侧的方块颜色和当前方块颜色相同,则剪枝。 由于题目中要求步数恰好是 n的方案,因此这个无意义的操作可能被用来填补操作步数,因此不能被剪掉。
代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int n;
int g[5][7], bg[5][5][7]; //g数组存图,bg数组用来备份恢复现场
int cnt[11], bcnt[5][11]; //cnt数组存储每个颜色当前个数,bcnt数组用来备份
bool st[5][7]; //st数组用来判重
struct Move
{
int x, y, d; //x表示横坐标,y表示纵坐标,d=-1时表示向左移,d=1时表示向右移
}path[5];
void move(int a, int b, int c)
{
swap(g[a][b], g[c][b]); //把g[a][b] -> g[c][b]
while (true)
{
bool flag = false;
//处理悬空方格
for (int x = 0; x < 5; x++) //双指针枚举每一行和每一列
{
int z = 0;
for (int y = 0; y < 7; y++)
if (g[x][y])
g[x][z++] = g[x][y];
while (z < 7) g[x][z++] = 0;
}
memset(st, false, sizeof st);
//枚举每个格子是否应该被删掉
for (int x = 0; x < 5; x ++ )
for (int y = 0; y < 7; y ++ )
if (g[x][y])
{
int l = x, r = x; //判断行
while (l - 1 >= 0 && g[l - 1][y] == g[x][y]) l--;
while (r + 1 < 5 && g[r + 1][y] == g[x][y]) r++;
if (r - l + 1 >= 3) //应该被删掉
{
flag = true;
st[x][y] = true;
}
else
{
l = r = y; //判断列
while (l - 1 >= 0 && g[x][l - 1] == g[x][y]) l--;
while (r + 1 < 7 && g[x][r + 1] == g[x][y]) r++;
if (r - l + 1 >= 3)
{
flag = true;
st[x][y] = true;
}
}
}
if (flag)
{
for (int x = 0; x < 5; x ++ )
for (int y = 0; y < 7; y ++ )
if (st[x][y])
{
cnt[0] --;
cnt[g[x][y]] --;
g[x][y] = 0;
}
}
else break;
}
}
bool dfs(int u)
{
if (u == n) return !cnt[0];
for (int i = 1; i <= 10; i++) //枚举所有颜色
if (cnt[i] == 1 || cnt[i] == 2) //剪枝一:如果某种颜色只有1个或2个小方块,则直接回溯
return false;
//备份
memcpy(bg[u], g, sizeof g);
memcpy(bcnt[u], cnt, sizeof cnt);
//枚举所有操作
for (int x = 0; x < 5; x ++ )
for (int y = 0; y < 7; y ++ )
if (g[x][y])
{
int nx = x + 1; //向右移动
if (nx < 5)
{
path[u] = { x, y, 1 };
move(x, y, nx);
if (dfs(u + 1)) return true;
//恢复现场
memcpy(g, bg[u], sizeof g);
memcpy(cnt, bcnt[u], sizeof cnt);
}
nx = x - 1; //向左移动
if (nx >= 0 && !g[nx][y]) //剪枝二:枚举向左移动时,如果左边有方块,则直接回溯
{
path[u] = { x, y, -1 };
move(x, y, nx);
if (dfs(u + 1)) return true;
memcpy(g, bg[u], sizeof g);
memcpy(cnt, bcnt[u], sizeof cnt);
}
}
return false;
}
int main()
{
scanf("%d",&n);
for (int x = 0; x < 5; x ++)
{
int y = 0, t;
while (scanf("%d",&t), t)
{
cnt[0] ++; //cnt[0]表示所有方块个数
cnt[t] ++;
g[x][y ++] = t;
}
}
if (dfs(0))
{
for(int i = 0; i < n; i++) printf("%d %d %d\n", path[i].x, path[i].y, path[i].d);
}
else puts("-1");
return 0;
}
二、虫食算
分析
1.搜索顺序:依次枚举每个字母代表哪个数字。
(由于时间复杂度为26! * 26 ,必然超时,故需要剪枝+边枚举边判断)
2.剪枝:对每一列对应字母
(1)如果后面所有字母都是确定的,则可以直接判断每一位是否合法。
(2)如果后面有某些字母没有确定,满足(A+B+0)% N = C或者(A+B+1)% N = C则合法。
(3)最高位不能有进位。
代码
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 30;
int n; //n进制
char e[3][N];
int q[N], path[N]; //q[]记录从右到左的次序,, path[]记录方案
bool st[N]; //记录state
bool check()
{
for (int i = n - 1, t = 0; i >= 0; i --)
{
int a = e[0][i] - 'A', b = e[1][i] - 'A', c = e[2][i] - 'A'; //a表示每一列上加数的字母,b表示被加数,c表示和
if (path[a] != -1 && path[b] != -1 && path[c] != -1) //如果当前字母都已经赋过值,判断是否有矛盾
{
a = path[a], b = path[b], c = path[c];
if (t != -1) //t表示进位
{
if ((a + b + t) % n != c) return false;
if (!i && a + b + t >= n) return false; //最高位不能有进位
t = (a + b + t) / n;
}
else
{
if ((a + b + 0) % n != c && (a + b + 1) % n != c) return false;
if (!i && a + b >= n) return false;
}
}
else t = -1;
}
return true;
}
bool dfs(int u)
{
if (u == n) return true; //搜索完最后一个字母,由于题目保证一定有解,因此已经得到了一个方案,返回
for (int i = 0; i < n; i ++) //否则枚举当前这一为应该选哪个数字
if (!st[i])
{
st[i] = true;
path[q[u]] = i;
if (check() && dfs(u + 1)) return true;
st[i] = false;
path[q[u]] = -1;
}
return false;
}
int main()
{
scanf("%d", &n);
for (int i = 0; i < 3; i ++) scanf("%s", e[i]);
for (int i = n - 1, k = 0; i >= 0; i --)
for (int j = 0; j < 3; j ++)
{
int t = e[j][i] - 'A'; //把当前字母映射成从0到25的一个数字
if (!st[t]) //如果数字之前没有出现过
{
st[t] = true;
q[k ++] = t;
}
}
memset(st, 0, sizeof st);
memset(path, -1, sizeof path);
dfs(0);
for (int i = 0; i < n; i ++) printf("%d ", path[i]);
return 0;
}
三、字串变换
分析
1.第一次做到双向BFS问题,我们用双端队列来解决。
BFS的扩展方式是:分别枚举在原字符串中使用替换规则的起点,和所使用的替换规则。
2.优化搜索方式:从两个队列空间较少的一方进行扩展。
3.双向BFS一般用在最小步数模型中。
代码
#include <iostream>
#include <algorithm>
#include <cstring>
#include <unordered_map> //开哈希表判断字符串是否已经搜过
#include <queue>
using namespace std;
const int N = 6;
int n; //规则数量
string a[N], b[N];
int extend(queue<string>& q, unordered_map<string, int>& da, unordered_map<string, int>& db, string a[], string b[])
{
int d = da[q.front()];
while(q.size() && da[q.front()]==d)
{
auto t = q.front();
q.pop();
for(int i = 0; i < n; i ++)
for(int j = 0; j < t.size(); j ++)
if(t.substr(j, a[i].size()) == a[i])
{
string st = t.substr(0, j) + b[i] + t.substr(j + a[i].size()); //中间部分换成b
if (da.count(st)) continue;
if (db.count(st)) return da[t] + db[st] + 1;
da[st] = da[t] + 1;
q.push(st);
}
}
return 11;
}
int bfs(string A, string B)
{
queue <string> qa, qb; //双端队列
unordered_map <string, int> da, db; //记录距离
qa.push(A), da[A] = 0;
qb.push(B), db[B] = 0;
int step = 0;
while (qa.size() && qb.size())
{
int t;
if (qa.size() <= qb.size()) t = extend(qa, da, db, a, b); //扩展qa队列,把a变成b
else t= extend(qb, db, da, b, a);
if(t <= 10) return t;
if(++step == 10) return -1;
}
return -1; //只要一个队列为空,则无解。例如,若起点为空,则说明从起点开始已经把所有情况搜完了还没有到终点,则无解。
}
int main()
{
string A, B; //A为起点,B为终点
cin >> A >> B;
while(cin >> a[n] >> b[n]) n ++;
int step = bfs(A, B);
if(step == -1) puts("NO ANSWER!");
else printf("%d\n", step);
return 0;
}
四、单词接龙
分析
1.可以把子串拼接过程看成一棵树,以开头字母为根节点,所有能够拼接的子串为一层,因此树的深度最多为40层。
代码
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 21;
int n;
string word[N];
int g[N][N]; //初始化每个单词和另一个单词之间是否有边
int used[N]; //记录每个单词当前用了多少次
int ans;
void dfs(string dragon, int last)
{
ans = max((int)dragon.size(), ans);
used[last] ++;
for (int i = 0; i < n; i ++) //枚举下一单词可以填哪个
if (g[last][i] && used[i] < 2) //如果last后面可以接i这个单词
dfs(dragon + word[i].substr(g[last][i]), i);
used[last] --; //回溯
}
int main()
{
cin >> n;
for (int i = 0; i < n; i ++) cin >> word[i];
char start;
cin >> start;
//初始化查看一个单词是否能接在另一单词后面
for (int i = 0; i < n; i ++)
for (int j = 0; j < n; j ++)
{
string a = word[i], b = word[j]; //a表示第一个单词,b表示第二个单词
for (int k = 1; k < min(a.size(), b.size()); k ++) //为使拼接后的单词长度最长,重合部分越短越好,从小到大枚举长度
if (a.substr(a.size() - k, k) == b.substr(0, k)) //a的后缀==b的前缀
{
g[i][j] = k; //记录重合部分最小长度
break;
}
}
for (int i = 0; i < n; i ++) //爆搜
if (word[i][0] == start)
dfs(word[i], i);
cout << ans << endl;
return 0;
}