jetFlow
码龄8年
关注
提问 私信
  • 博客:40,256
    40,256
    总访问量
  • 3
    原创
  • 1,105,444
    排名
  • 5
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2017-05-27
博客简介:

jetFlow的博客

查看详细资料
个人成就
  • 获得48次点赞
  • 内容获得12次评论
  • 获得154次收藏
创作历程
  • 2篇
    2018年
  • 1篇
    2017年
TA的专栏
  • sklearn-教程
    1篇
  • 机器学习
    2篇
  • 深度学习
    1篇
  • tensorflow
    1篇
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

474人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

TensorFlow中的梯度裁剪(Gradient Clipping)

梯度爆炸是深度学习中十分常见的现象,有时会导致寻优过程不收敛,或者算出来的结果干脆直接溢出,例如在Python里都是Nan,使迭代无法继续下去。TensorFlow里提供了一系列简单可行的梯度裁剪函数,方便我们对超过阈值的梯度值进行规约,使优化算法相对更加数值稳定。 TensorFlow里提供的几个Gradient Clipping函数都是以clip_by开头,分别是tf.clip_by_nor...
原创
发布博客 2018.05.02 ·
12224 阅读 ·
3 点赞 ·
0 评论 ·
31 收藏

步长大于1时卷积神经网的反向传播

关于卷积神经网络的正向和反向传播网上已经有了大量的技术指导,但是绝大部分都止步于卷积核步长为1,且通道数为1的简单的示意性的推导,当步长为2时,大多数的教程都语焉不详,或直接跳过。我在这里就对步长为2以上的卷积操作进行详细讨论。本文假设读者已经基本掌握神经网络的链式求导法则,所以不会再讲这些细节。另外,本文只考虑卷积操作的正向和反向传播,如果想对池化层的相应过程做了解可以直接移步参考文献。申明...
原创
发布博客 2018.04.29 ·
1670 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

Sklearn中的f_classif和f_regression

这两天在看Sklearn的文档,在feature_selection一节中遇到俩f值,它们是用来判断模型中特征与因变量的相关性的。刚开始看的时候一头雾水,因为需要数理统计中方差分析的背景,现在在这里简要剖析一下这两个方法的原理和用法。
原创
发布博客 2017.12.24 ·
26359 阅读 ·
43 点赞 ·
12 评论 ·
146 收藏