Sklearn中的f_classif和f_regression

本文介绍了Sklearn中的f_classif和f_regression方法,它们用于评估特征与因变量的相关性。f_classif基于方差分析,适用于分类问题,通过比较不同类别中特征的均值差异来评估预测能力。f_regression则计算特征与连续因变量的样本相关系数,并转化为F统计量,适用于回归问题。f值越大,表明特征与因变量的相关性越强,可用于特征选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这两天在看Sklearn的文档,在feature_selection一节中遇到俩f值,它们是用来判断模型中特征与因变量的相关性的。刚开始看的时候一头雾水,因为需要数理统计中方差分析的背景,现在在这里简要剖析一下这两个方法的原理和用法。
我们先来看看sklearn的API是怎么解释这两个方法的:

Compute the ANOVA F-value for the provided sample. ——sklearn.feature_selection.f_classif

f_calssif计算ANOVA中的 f 值,这和特征选择怎么搭上关系???
下面是对f_regression的解释,更晕了。。

Univariate linear regression tests.
Linear model for testing the individual effect of each of many regressors. This is a scoring function to be used in a feature seletion procedure, not a free standing feature selection procedure.
This is done in 2 steps:
The correlation between each regressor and the target is computed, that is,
((X[:, i] - mean(X[:, i])) * (y - mean_y)) / (std(X[:, i]) * std(y)).
It is converted to an F score then to a p-value.
——sklearn.feature_selection.f_regression


方差分析(ANOVA)

在传统的统计学中 f 值是用于方差分析的(analysis of variance),感兴趣的旁友可以参考任意一本统计学教材,里面有关于方差分析的详细推导和流程,我在这里就做一下简单的引入。传统的方差分析(或者说是多重均值比较)是这样的,举个经典的栗子:
我们开发出了一种降血压的药,需要检验这个降血压药品的药效如何。我们就做了如下实验,给定不同剂量,分别是0,1,2,3,4这四个级别的剂量(0剂量表示病人服用了安慰剂),给4组病人服用,在一定时间后测量病人的血压差,在得到数据以后。我们要问,这种新药是不是有显著药效,也就是说病人的血压差是不是显著的不等于0。
数据如下:

剂量 血压差
0 x01 x02 x0n0
1 x11 x12 x1n1
2 x21 x22 x2n2
3 x31 x32 x3n3
4 x41 x42 x4n4

我们得到了5个总体 Xi,i=0,1,2,3,4 ,这五个总体的均值为 μi ,我们假设是:
H0:μ0=μ1

<think>好的,我现在需要解决的问题是用户提供的Python代码在生成可视化图表时无法显示中文标签。用户已经尝试设置了一些中文字体,但可能遇到了问题。首先,我需要仔细分析用户提供的代码,找出可能导致中文不显示的原因,并提供解决方案。 首先,用户导入了matplotlibseaborn,并设置了plt.style.use两次,第一次是'seaborn-v0_8',然后是'ggplot',后面的设置可能会覆盖前面的样式。接着,用户使用sns.set_palette("husl")设置调色板。然后,用户尝试设置中文字体:plt.rcParams['font.sans-serif'] = ['SimHei'],并且重复了两次。还设置了标题间距plt.rcParams['axes.titlepad'] = 20。但是用户发现可视化图表仍然不显示中文。 接下来,我需要考虑可能导致中文无法显示的几个常见原因: 1. **字体设置被覆盖**:用户可能在设置字体后,某些操作(如seaborn或matplotlib样式设置)重置了rcParams,导致字体配置失效。尤其是用户两次调用plt.style.use,第二次使用'ggplot'可能会覆盖之前的字体设置。 2. **缺少中文字体**:SimHei是Windows系统中的字体,如果用户在其他操作系统(如macOS或Linux)上运行代码,可能没有安装该字体,导致回退到默认字体,无法显示中文。 3. **字符编码问题**:虽然较新版本的matplotlib已经处理了大部分编码问题,但在某些情况下仍需确认。 4. **负号显示问题**:有时,负号可能无法正确显示,但这个问题通常与字体无关。 接下来,我需要逐一排查这些可能性并提供解决方案。 首先,检查字体设置是否被覆盖。用户代码中两次设置了plt.style.use,第二次是'ggplot',这可能会覆盖之前的设置,包括字体。matplotlib的样式(style.use)会重置rcParams中的某些配置,因此如果在设置样式之后设置字体,可能会被覆盖。用户当前的代码顺序是: ```python plt.style.use('seaborn-v0_8') sns.set_palette("husl") plt.rcParams['font.sans-serif'] = ['SimHei'] # 第一次设置 plt.rcParams['axes.titlepad'] = 20 plt.rcParams['font.sans-serif'] = ['SimHei'] # 第二次设置 plt.style.use('ggplot') ``` 这里的问题在于,用户先设置了字体,然后再次调用plt.style.use('ggplot'),这可能会覆盖之前的字体设置。正确的做法应该是在设置完所有样式之后,再设置字体参数,或者在设置样式后重新设置字体。 解决方案建议调整代码顺序,将plt.style.use放在最前面,然后设置字体。例如: ```python plt.style.use('ggplot') # 先设置样式 sns.set_palette("husl") plt.rcParams['font.sans-serif'] = ['SimHei'] # 然后设置字体 plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题 plt.rcParams['axes.titlepad'] = 20 ``` 此外,用户可能需要设置axes.unicode_minus为False,以避免负号显示为方块。 第二,检查操作系统是否支持SimHei字体。对于非Windows系统,可能需要手动安装中文字体,或者使用其他已安装的字体名称。例如,在macOS或Linux中,可以使用'Noto Sans CJK JP'、'WenQuanYi Zen Hei'等字体。用户可能需要先确认系统中有哪些可用中文字体,或者安装SimHei字体。 第三,确保matplotlib的版本没有问题,某些旧版本可能存在字体配置的bug,建议升级到最新版本。 可能的解决方案步骤: 1. 调整代码顺序,确保在设置样式之后再设置字体参数。 2. 添加plt.rcParams['axes.unicode_minus'] = False以处理负号。 3. 如果系统没有SimHei字体,更换为系统支持的中文字体,或者安装所需字体。 4. 检查是否有其他代码或库覆盖了rcParams设置。 此外,使用seaborn时,sns.set()或sns.set_style()也可能影响matplotlib的配置,但通常不会覆盖字体设置。不过为了保险起见,可以在设置seaborn之后再次设置字体。 如果用户在使用Jupyter notebook,可能需要重启内核以使字体设置生效,或者使用%matplotlib inline魔法命令重新加载配置。 如果上述方法无效,可能需要清除matplotlib的缓存文件,或者尝试使用绝对字体路径。 总结用户需要修改的代码部分: 将plt.style.use('ggplot')提前,然后在设置字体之后不再调用其他可能覆盖样式的设置,并添加unicode_minus的设置。 修改后的代码示例: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # 先设置样式 plt.style.use('ggplot') # 这里覆盖了之前的seaborn-v0_8,所以保留最后设置的样式 sns.set_palette("husl") # 设置中文字体相关参数 plt.rcParams['font.sans-serif'] = ['SimHei'] # 确保在设置样式之后 plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题 plt.rcParams['axes.titlepad'] = 20 # 其他导入 from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import SelectKBest, f_classif from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, classification_report, roc_curve, auc, confusion_matrix import statsmodels.api as sm from sklearn.metrics import precision_score, roc_curve ``` 这样调整后,字体设置应该不会被后续的样式设置覆盖。如果仍然无法显示,可能需要检查系统字体或更换字体名称。 另外,如果用户使用的是macOS,可能需要使用以下代码来指定字体: ```python plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] # macOS常用中文字体 ``` 或者安装SimHei字体到系统中,并在matplotlib中指定路径。 最后,建议用户提供一个简单的绘图示例来测试中文是否显示正常,例如: ```python plt.figure() plt.title('测试中文标题') plt.xlabel('X轴') plt.ylabel('Y轴') plt.plot([1,2,3], [4,5,6]) plt.show() ``` 如果测试图中标题标签能正确显示中文,则问题解决。</think>为了使代码中的可视化图表正确显示中文,需调整配置顺序并确保字体设置正确。以下是逐步解决方案: ### 步骤 1:调整代码顺序,防止样式覆盖字体 将 `plt.style.use()` 放在所有 `rcParams` 设置之前,避免样式重置字体: ```python import matplotlib.pyplot as plt import seaborn as sns # 先设置全局样式 plt.style.use('ggplot') # 覆盖之前的样式,确保最终生效 sns.set_palette("husl") # 调色板设置 # 再配置中文字体 plt.rcParams['font.sans-serif'] = ['SimHei'] # Windows系统字体 plt.rcParams['axes.unicode_minus'] = False # 解决负号显示为方块的问题 plt.rcParams['axes.titlepad'] = 20 # 标题间距 ``` ### 步骤 2:检查操作系统兼容性 - **Windows**:直接使用 `SimHei` 字体。 - **macOS/Linux**:替换为系统支持的中文字体,如: ```python plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] # macOS # 或 plt.rcParams['font.sans-serif'] = ['WenQuanYi Zen Hei'] # Linux ``` ### 步骤 3:验证字体是否生效 添加测试代码,检查中文显示: ```python # 测试中文显示 plt.figure() plt.title('中文标题测试') plt.xlabel('X轴标签') plt.ylabel('Y轴标签') plt.plot([1, 2, 3], [4, 5, 6]) plt.show() ``` ### 步骤 4:安装缺失字体(如必要) 若系统无中文字体,需手动安装: 1. **下载字体**(如 `SimHei.ttf`)。 2. **放置到matplotlib字体目录**: ```python import matplotlib as mpl print(mpl.get_cachedir() + '/fonts') # 找到字体缓存路径,放入字体文件 ``` 3. **清除缓存**:删除缓存文件夹内的 `*.json` 文件。 ### 最终代码整合 ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # 设置样式字体 plt.style.use('ggplot') # 最后生效的样式 sns.set_palette("husl") # 调色板 # 中文字体配置 plt.rcParams['font.sans-serif'] = ['SimHei'] # 根据系统调整 plt.rcParams['axes.unicode_minus'] = False # 修复负号显示 plt.rcParams['axes.titlepad'] = 20 # 标题间距 # 其他库导入 from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import SelectKBest, f_classif from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, classification_report, roc_curve, auc, confusion_matrix import statsmodels.api as sm from sklearn.metrics import precision_score, roc_curve # 测试绘图 plt.title('中文标题测试') # 应正常显示 ``` ### 效果验证 运行测试代码后,若图表标题、轴标签显示为中文且无乱码,则配置成功。若仍不显示,请检查系统字体支持或重新安装matplotlib。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值