RAG知识库中的错误知识,会被大模型采用吗?

斯坦福大学的研究发现,RAG能显著提高大模型回答问题的准确性,但并非100%可靠;知识库的正确性和大模型内部知识的准确性对结果至关重要,提示语影响答案选择。实验局限于特定知识领域和问题类型,且未涵盖复杂错误情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当GPT-4无法正确回答一个问题时,依靠RAG和检索得到的正确知识,一定就能生成正确的回答吗?如果RAG知识库中的知识是错的、或者RAG知识库中的知识与大模型内部的知识相矛盾,会出现什么结果?

围绕这些问题,斯坦福大学近期的一篇论文[1]介绍了作者们的有关实验以及实验的结果。

实验结果

实验的主要结果如下。

一、当大模型使用检索出的正确知识回答问题时,能够正确回答94%的测试问题。相比之下,当大模型不使用检索、单独回答测试问题时,只能正确回答35%的测试问题。这表明RAG能够提高、但是不能确保大模型回答问题的准确性。

二、检索得到的知识是否会被大模型采用,与大模型对于其内部知识的确信程度有关:

  • 如果大模型对于其内部知识的确信程度较弱,生成的回答则倾向于使用检索得到的知识;
  • 如果大模型对于其内部知识的确信程度较强,生成的回答则倾向于使用大模型内部的知识;
  • 计算“确信程度”时,实验中依据的是大模型输出的token的logprobs值。

三、当RAG知识库中的知识与正确的知识相矛盾时,矛盾的程度越大,生成的回答就越倾向于使用大模型内部的知识。这表明了知识库中存储正确知识的重要性。

四、当检索得到的知识与大模型内部的知识相矛盾时,矛盾的程度越大,生成的回答就越倾向于使用大模型内部的知识。这表明了大模型内部知识的正确性同样非常重要。

五、提示语的倾向性会影响生成的回答:

  • 如果提示语倾向于忽略大模型的内部知识,生成的回答就倾向于使用检索得到的知识;
  • 如果提示语鼓励在(a)检索得到的知识和(b)大模型内部知识两方面之间做出权衡,生成的回答则倾向于使用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值