基于知识图谱技术增强大模型RAG知识库应用效果

【摘要】本文是AI落地实践的优秀案例,利用RAG技术(Retrieval-Augmented Generation,检索增强生成)的知识库实践为背景,介绍了RAG技术的发展及存在的不足,以及知识图谱相关的知识,利用RAG技术去完善和智能化知识图谱。在AI技术大量涌现,但应用不足的情况下,指明了现有应用场景、技术与AI结合的具体做法。

1. 引言

随着人工智能技术的加速演进,AI 大模型如雨后春笋般纷纷涌现,已逐渐成为科技竞争和产业发展的新高地。据统计,目前国产大模型已超过200个,覆盖了金融、医疗、教育等多个关键领域。然而,大模型应用在快速发展的同时,也面临着一些挑战和问题,如幻觉问题、可解释性及更新时效不足等。为应对上述问题,利用知识图谱技术与大模型的融合正逐渐成为新的研究热点。

知识图谱作为高度结构化的知识模型,其真实性和可靠性可以提升大模型的解释推理能力,进而可以实现更加智能、精准和可靠的专业AI应用。

2. RAG 知识库

2.1. 知识库概述

以数据和经验为基础的知识信息管理在各个行业和领域都至关重要,随着知识经济的到来,有效地管理和利用知识信息,成为企业获得竞争优势、促进创新和发展最有效途径。传统

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值