来源
写论文,从二维变三维空间,对三维工作空间分析,希望创建漂亮的工作空间示意图。二维区域着色已经在之前博文提到过了:Matlab不规则区域渐变色填充及注意事项。这里主要讲三维曲面着色。
方法
实现绘制曲面的函数有不少,典型如下
函数 | 含义 |
---|---|
mesh、surf | 曲面图 |
meshc、surfc | 下方带有等高线图的曲面图 |
meshz | 带帷幕图(参考平面)的曲面图 |
pcolor | 单一着色平面图(值仅与颜色成比例) |
surfl | 从指定方向照亮的曲面图 |
surface | 用于创建曲面图形对象的低级函数(高级函数的基础) |
函数plot3在此不考虑,因为它不是绘制曲面的函数。
具体可以参考官方帮助文档:将数据表示为曲面。
我选择使用surf
函数来绘图。
surf函数
surf(X,Y,Z) 创建一个三维曲面图。该函数将矩阵 Z 中的值绘制为由 X 和 Y 定义的 x-y 平面中的网格上方的高度。函数还对颜色数据使用 Z,因此颜色与高度成比例。
关键:这个函数的参数都是矩阵,如何将二维空间通过旋转得到三维空间,并是数据结构适合surf函数是我遇到的难点。换一句话就是,如何把plot3函数参数的数据应用到surf函数中。
实例
二维数据
上面图形是二维工作空间,现在将该图形中右侧下方橙黄色线沿着‘x=0’(z轴)旋转360°得到封闭的三维曲面。三维封闭空间可以使用相同的方式把其他边界线旋转得到。
解决方案
从二维图形中获取右侧下方一半橙黄色实现数据,即下方代码前两行数据,我将其转置是为了后面产生矩阵。绕z轴旋转,二维的X坐标就转换成三维的X与Y坐标,二者关系式一个圆的方程,这里使用参数方程进行转换。使用surf绘制可得
X_t=Pos_2D{1,2}'; % 二维X坐标
Z_t=Pos_2D{1,3}'; % 二维Z坐标
theta = linspace(0, 2*pi, length(X_t)); % 产生相同长度的向量
X = X_t*cos(theta); % 产生三维X坐标矩阵
Y = X_t*sin(theta); % 产生三维Y坐标矩阵
Z=Z_t*ones(1,length(Z_t)); % 产生三维Z坐标矩阵
surf(X,Y,Z,'EdgeColor', 'none')
其他方案
在生成二维坐标值的时候 内嵌一个循环直接生成三维坐标。不相关变量没有提供注释。这样也可以得到上面的三维着色曲面。
tt=1;
for i=1:length(epsilonWorkspace)
phi_0 = EPSILON *2*bending_L(k)/d;
phi(i) = epsilonWorkspace(i)*2*bending_L(k)/d;
curve_angle(i) = phi_0-phi(i);
R(i) = bending_L(k)/curve_angle(i);
X(i)=-1*R(i)+R(i)*cos(curve_angle(i)) ; % 生成二维X坐标
Z(i)=R(i)*sin(curve_angle(i)); % 生成二维Z坐标
for p = 0 : pi/20 : 2*pi
X_3D(tt) = X(i) * cos(tt); % 生成三维X坐标
Y_3D(tt) = X(i) * sin(tt); % 生成三维Y坐标
Z_3D(tt) = Z(i); % 生成三维Z坐标
tt = tt +1;
end
end
%把上面的坐标向量转换成surf可以使用的矩阵
n = floor(nthroot(length(Z_3D),2));
X_3D((floor(nthroot(length(X_3D),2))^2+1):length(X_3D))=[];
Y_3D((floor(nthroot(length(Y_3D),2))^2+1):length(Y_3D))=[];
Z_3D((floor(nthroot(length(Z_3D),2))^2+1):length(Z_3D))=[];
XXX = reshape(X_3D,n,n)';
YYY = reshape(Y_3D,n,n)';
ZZZ = reshape(Z_3D,n,n)';
surf(XXX, YYY,ZZZ)
常见错误
surf报错
surf函数的输入参数都是矩阵
生成的图形是黑色
如果生成的曲面是上图黑色,这是因为之前的循环中间隔太小,然而默认surf会绘制曲线颜色导致,使用下面代码取消曲线颜色显示,结果如下:
生成曲面光滑
上图我人为是生成数据点时,点之间过渡不光滑导致,因为在其他方案中是 把二维XZ平面中的一个点处理成三维空间一个平面圆,然后处理下一个点。