我们有一个由平面上的点组成的列表 points
。需要从中找出 K
个距离原点 (0, 0)
最近的点。
(这里,平面上两点之间的距离是欧几里德距离。)
你可以按任何顺序返回答案。除了点坐标的顺序之外,答案确保是唯一的。
示例 1:
输入:points = [[1,3],[-2,2]], K = 1
输出:[[-2,2]]
解释:
(1, 3) 和原点之间的距离为 sqrt(10),
(-2, 2) 和原点之间的距离为 sqrt(8),
由于 sqrt(8) < sqrt(10),(-2, 2) 离原点更近。
我们只需要距离原点最近的 K = 1 个点,所以答案就是 [[-2,2]]。
示例 2:
输入:points = [[3,3],[5,-1],[-2,4]], K = 2
输出:[[3,3],[-2,4]]
(答案 [[-2,4],[3,3]] 也会被接受。)
提示:
1 <= K <= points.length <= 10000
-10000 < points[i][0] < 10000
-10000 < points[i][1] < 10000
通过次数29,760
| 提交次数48,272
代码实现
- 使用
sort()
class Solution:
def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
points.sort(key=lambda x:(x[0]**2+x[1]**2))
return points[:K]
- 使用
sorted()
class Solution:
def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
return sorted(points,key=lambda x:(x[0]**2+x[1]**2))points[:K]
topK
class Solution:
def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
re = []
temp = []
for p in points:
dis = p[0]**2 + p[1]**2
idx = bisect.bisect_left(temp, dis)
if len(temp) < K:
temp.insert(idx, dis)
re.insert(idx, p)
elif idx < K:
temp.pop()
re.pop()
temp.insert(idx, dis)
re.insert(idx, p)
return re
- 使用
heapq
class Solution:
def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
import heapq
re = [{'points' : i, 'dis' : i[0]**2 + i[1]**2} for i in points]
temp = [i['points'] for i in heapq.nsmallest(K, re, lambda x: x['dis'])]
return temp
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/k-closest-points-to-origin
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。