11.9 每日一题 973. 最接近原点的 K 个点

我们有一个由平面上的点组成的列表 points。需要从中找出 K个距离原点 (0, 0) 最近的点。

(这里,平面上两点之间的距离是欧几里德距离。)

你可以按任何顺序返回答案。除了点坐标的顺序之外,答案确保是唯一的。

示例 1:

输入:points = [[1,3],[-2,2]], K = 1
输出:[[-2,2]]
解释: 
(1, 3) 和原点之间的距离为 sqrt(10),
(-2, 2) 和原点之间的距离为 sqrt(8),
由于 sqrt(8) < sqrt(10),(-2, 2) 离原点更近。
我们只需要距离原点最近的 K = 1 个点,所以答案就是 [[-2,2]]。

示例 2:

输入:points = [[3,3],[5,-1],[-2,4]], K = 2
输出:[[3,3],[-2,4]]
(答案 [[-2,4],[3,3]] 也会被接受。)

提示:

  • 1 <= K <= points.length <= 10000
  • -10000 < points[i][0] < 10000
  • -10000 < points[i][1] < 10000

通过次数29,760 | 提交次数48,272

代码实现

  • 使用sort()
class Solution:
    def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
        points.sort(key=lambda x:(x[0]**2+x[1]**2))
        return points[:K]
  • 使用sorted()
class Solution:
    def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
        return sorted(points,key=lambda x:(x[0]**2+x[1]**2))points[:K]
  • topK
class Solution:
    def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
        re = []
        temp = []
        for p in points:
            dis = p[0]**2 + p[1]**2
            idx = bisect.bisect_left(temp, dis)
            if len(temp) < K:
                temp.insert(idx, dis)
                re.insert(idx, p)
            elif idx < K:
                temp.pop()
                re.pop()
                temp.insert(idx, dis)
                re.insert(idx, p)
        return re
  • 使用heapq
class Solution:
    def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
        import heapq
        re = [{'points' : i, 'dis' : i[0]**2 + i[1]**2} for i in points]
        temp = [i['points'] for i in heapq.nsmallest(K, re, lambda x: x['dis'])]
        return temp 
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/k-closest-points-to-origin
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jhaos

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值