Datawhale-天池 街景字符识别赛题 Task2 数据读取与数据扩增(内含代码详解)

Datawhale 零基础入门CV赛事-Task2 数据读取与数据扩增

在上一章节,我们给大家讲解了赛题的内容和三种不同的解决方案。从本章开始我们将逐渐的学习使用【定长字符识别】思路来构建模型,逐步讲解赛题的解决方案和相应知识点。

2 数据读取与数据扩增

本章主要内容为数据读取、数据扩增方法和Pytorch读取赛题数据三个部分组成。

2.1 学习目标

  • 学习Python和Pytorch中图像读取
  • 学会扩增方法和Pytorch读取赛题数据

2.2 图像读取

由于赛题数据是图像数据,赛题的任务是识别图像中的字符。因此我们首先需要完成对数据的读取操作,在Python中有很多库可以完成数据读取的操作,比较常见的有Pillow和OpenCV。

2.2.1 Pillow

Pillow是Python图像处理函式库(PIL)的一个分支。Pillow提供了常见的图像读取和处理的操作,而且可以与ipython notebook无缝集成,是应用比较广泛的库。

效果 代码
在这里插入图片描述 from PIL import Image
# 导入Pillow库

# 读取图片
im =Image.open(cat.jpg’)
在这里插入图片描述 from PIL import Image, ImageFilter
im = Image.open(‘cat.jpg’)
# 应用模糊滤镜:
im2 = im.filter(ImageFilter.BLUR)
im2.save(‘blur.jpg’, ‘jpeg’)
在这里插入图片描述 from PIL import Image
# 打开一个jpg图像文件,注意是当前路径:
im = Image.open(‘cat.jpg’)
im.thumbnail((w//2, h//2))
im.save(‘thumbnail.jpg’, ‘jpeg’)

当然上面只演示了Pillow最基础的操作,Pillow还有很多图像操作,是图像处理的必备库。
Pillow的官方文档:https://pillow.readthedocs.io/en/stable/

2.2.2 OpenCV

OpenCV是一个跨平台的计算机视觉库,最早由Intel开源得来。OpenCV发展的非常早,拥有众多的计算机视觉、数字图像处理和机器视觉等功能。OpenCV在功能上比Pillow更加强大很多,学习成本也高很多。

效果 代码
在这里插入图片描述 import cv2
# 导入Opencv库
img = cv2.imread(‘cat.jpg’)
# Opencv默认颜色通道顺序是BRG,转换一下
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
在这里插入图片描述 import cv2
# 导入Opencv库
img = cv2.imread(‘cat.jpg’)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 转换为灰度图
在这里插入图片描述 import cv2
# 导入Opencv库
img = cv2.imread(‘cat.jpg’)
img =cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 转换为灰度图
# Canny边缘检测
edges = cv2.Canny(img, 30, 70)
cv2.imwrite(‘canny.jpg’, edges)

OpenCV包含了众多的图像处理的功能,OpenCV包含了你能想得到的只要与图像相关的操作。此外OpenCV还内置了很多的图像特征处理算法,如关键点检测、边缘检测和直线检测等。
OpenCV官网:https://opencv.org/
OpenCV Github:https://github.com/opencv/opencv
OpenCV 扩展算法库:https://github.com/opencv/opencv_contrib

2.3 数据扩增方法

在上一小节中给大家初步介绍了Pillow和OpenCV的使用,现在回到赛题街道字符识别任务中。在赛题中我们需要对的图像进行字符识别,因此需要我们完成的数据的读取操作,同时也需要完成数据扩增(Data Augmentation)操作。

2.3.1 数据扩增介绍

在深度学习中数据扩增方法非常重要,数据扩增可以增加训练集的样本,同时也可以有效缓解模型过拟合的情况,也可以给模型带来的更强的泛化能力。

在这里插入图片描述

  • 数据扩增为什么有用?

    在深度学习模型的训练过程中,数据扩增是必不可少的环节。现有深度学习的参数非常多,一般的模型可训练的参数量基本上都是万到百万级别,而训练集样本的数量很难有这么多。
    其次数据扩增可以扩展样本空间,假设现在的分类模型需要对汽车进行分类,左边的是汽车A,右边为汽车B。如果不使用任何数据扩增方法,深度学习模型会从汽车车头的角度来进行判别,而不是汽车具体的区别。

在这里插入图片描述

  • 有哪些数据扩增方法?

    数据扩增方法有很多:从颜色空间、尺度空间到样本空间,同时根据不同任务数据扩增都有相应的区别。
    对于图像分类,数据扩增一般不会改变标签;对于物体检测,数据扩增会改变物体坐标位置;对于图像分割,数据扩增会改变像素标签。

2.3.2 常见的数据扩增方法

在常见的数据扩增方法中,一般会从图像颜色、尺寸、形态、空间和像素等角度进行变换。当然不同的数据扩增方法可以自由进行组合,得到更加丰富的数据扩增方法。

以torchvision为例,常见的数据扩增方法包括:

  • transforms.CenterCrop 对图片中心进行裁剪
  • transforms.ColorJitter 对图像颜色的对比度、饱和度和零度进行变换
  • transforms.FiveCrop 对图像四个角和中心进行裁剪得到五分图像
  • transforms.Grayscale 对图像进行灰度变换
  • transforms.Pad 使用固定值进行像素填充
  • transforms.RandomAffine 随机仿射变换
  • transforms.RandomCrop 随机区域裁剪
  • transforms.RandomHorizontalFlip 随机水平翻转
  • transforms.RandomRotation 随机旋转
  • transforms.RandomVerticalFlip 随机垂直翻转

在这里插入图片描述

在本次赛题中,赛题任务是需要对图像中的字符进行识别,因此对于字符图片并不能进行翻转操作。比如字符6经过水平翻转就变成了字符9,会改变字符原本的含义。

2.3.3 常用的数据扩增库

  • torchvision

    https://github.com/pytorch/vision
    pytorch官方提供的数据扩增库,提供了基本的数据数据扩增方法,可以无缝与torch进行集成;但数据扩增方法种类较少,且速度中等;

  • imgaug

    https://github.com/aleju/imgaug
    imgaug是常用的第三方数据扩增库,提供了多样的数据扩增方法,且组合起来非常方便,速度较快;

  • albumentations

    https://albumentations.readthedocs.io
    是常用的第三方数据扩增库,提供了多样的数据扩增方法,对图像分类、语义分割、物体检测和关键点检测都支持,速度较快。

2.4 Pytorch读取数据

由于本次赛题我们使用Pytorch框架讲解具体的解决方案,接下来将是解决赛题的第一步使用Pytorch读取赛题数据。
在Pytorch中数据是通过Dataset进行封装,并通过DataLoder进行并行读取。所以我们只需要重载一下数据读取的逻辑就可以完成数据的读取。

接下来先完成dataset的一个封装

class SVHNDataset(Dataset):
    def __init__(self, img_path, img_label, transform=None):
        self.img_path = img_path
        self.img_label = img_label
        if transform is not None:
            self.transform = transform
        else:
            self.transform = None

    def __getitem__(self, index):
        img = Image.open(self.img_path[index]).convert('RGB')

        if self.transform is not None:
            img = self.transform(img)

        # 原始SVHN中类别10为数字0
        lbl = np.array(self.img_label[index], dtype=np.int)
        # print(type(lbl))
        lbl = list(lbl) + (5 - len(lbl)) * [10]

        return img, torch.from_numpy(np.array(lbl[:5]))

    def __len__(self):
        return len(self.img_path)

train_path = glob.glob('../input/train/*.png')#在路径下获取与相同后缀的.png图像路径并且以列表的形式返回
train_path.sort()#对列表元素进行排序默认升序
train_json = json.load(open('../input/train.json'))#加载json文件以字典的形式返回
train_key_list = list(train_json.keys())#获取字典的所有Key值并变成列表的形式
train_key_list.sort()
train_label = [train_json[x]['label'] for x in train_key_list]#列表生成式完成索引的建立

对上面代码做一下具体说明:
(1)glob的用法,需要提前导入import glob

train_path = glob.glob('../input/train/*.png')
print(train_path)
#显示['../input/train\\000000.png', '../input/train\\000001.png', '../input/train\\000002.png', '../input/train\\000003.png', 等等一些列路径

(2)加载json的一个返回内容

train_json = json.load(open('../input/train.json'))
print(train_json)
#输出显示 '019265.png': {'width': [21.0], 'left': [34.0], 'label': [1], 'height': [41.0], 'top': [6.0]}, '015103.png': {'width': [23, 22, 19], 'left': [76, 95, 112], 'label': [6, 0, 7]等内容

发现在python3.6版本以前这个字典的存储是不按照顺序进行存储的,所以为了能够让标签与对应图片一样,所以采用对keys进行同样的排序的方式,但是如果使用的是python3.6包括3.6版本以上版本,这里的字典的keys是按照存储顺序先后进行存储是有顺序的,不需要进行排序了,所以在使用字典的时候最好打印输出下,看看内部存储顺序,避免出现图片与标签不对应问题

train_key_list = list(train_json.keys())#获取字典的所有Key值并变成列表的形式
train_key_list.sort()

(3)对SVHNDataset类的构建进行说明

#首先要继承父类Dataset,而且发现父类并没有初始话,这里也就不打算调用父类初始化
#父类里面只有 __getitem__方法和__add__方法,需要对这个__getitem__进行重写,而且为了方便显示图片个数,加入了__len__的魔术方法
#__getitem__魔术方法,当对象进行索引([])的时候系统会自动调用
a = SVHNDataset(train_path, train_label)
print(a[0])
#输出显示:(<PIL.Image.Image image mode=RGB size=741x350 at 0xAE7BC18>, tensor([ 1,  9, 10, 10, 10], dtype=torch.int32))
#由于上面写的return回来两这值,分别是图片路径中的第一个图片和标签,可以看到输出的是一个元组类型

#标签的构建
lbl = list(lbl) + (5 - len(lbl)) * [10]
#当原标签list(lbl)长度小于5的时候,此时通过拼接数字10达到长度为5目的

所以当我们在构建dataset时候要初始化输入两个列表(图片路径,对应标签),这样__getitem_才能通过索引来抽取对应图片

通过上述代码,可以将赛题的图像数据和对应标签进行读取,在读取过程中的进行数据扩增,效果如下所示:

1 2 3
在这里插入图片描述 在这里插入图片描述 在这里插入图片描述
在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

接下来我们将在定义好的Dataset基础上构建DataLoder,你可以会问有了Dataset为什么还要有DataLoder?其实这两个是两个不同的概念,是为了实现不同的功能。

  • Dataset:对数据集的封装,提供索引方式的对数据样本进行读取
  • DataLoder:对Dataset进行封装,提供批量读取的迭代读取

加入DataLoder后,数据读取代码改为如下:

import os, sys, glob, shutil, json
import cv2

from PIL import Image
import numpy as np

import torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transforms


train_loader = torch.utils.data.DataLoader(
        SVHNDataset(train_path, train_label,
                   transforms.Compose([
                       transforms.Resize((64, 128)),
                       transforms.ColorJitter(0.3, 0.3, 0.2),
                       transforms.RandomRotation(5),
                       transforms.ToTensor(),
                       transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ])), 
    batch_size=10, # 每批样本个数
    shuffle=False, # 是否打乱顺序
    num_workers=10, # 读取的线程个数
)

for data in train_loader:
    break

在加入DataLoder后,数据按照批次获取,每批次调用Dataset读取单个样本进行拼接。此时data的格式为:
torch.Size([10, 3, 64, 128]), torch.Size([10, 6])
前者为图像文件,为batchsize * chanel * height * width次序;后者为字符标签。

对上面torch.utils.data.DataLoader代码做一下具体说明:
(1)transforms.Compose说明
首先加入了dataset的类同时在其中添加transforms.Compose的方法,现在看一下transforms.Compose方法
在这里插入图片描述
这里可以看出通过__call__()的魔术方法进行调用(call()只有当对象最为方法的时候才会调用,也就是transforms.Compose()的时候会调用)这里需要初始话传递一个transforms的列表
在这里插入图片描述
这里在通过transform()来掉用__call__()方法
(2)torch.utils.data.DataLoaderf返回值的说明

#先看一下这个train_loadertorch.utils.data.DataLoaderf()的方法和属性
print(dir(train_loader))
#输出显示'__init__', '__iter__', '__le__', '__len__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__'等还有好多
#发现有__iter__魔术方法但是没有__next__()说明这个train_loader是一个可迭代的,并不是迭代器,采用iter()方法进行读取
a= iter(train_loader)#train_loader类中只定义了一个__inter__函数是一个可迭代的interable,所以用iter转成迭代器
data= next(a)#调用迭代器的next方法
print("data类型",type(data))
print(data[0].shape)
print('--------------------------------')
print(data[1])

在这里插入图片描述
可以看出确实是按照batchsize=4大小进行的一个输出,同时可以发现,这个迭代器返回的是一个列表,两个值,其中[0]是数据,[1]是对应标签
(3)多级对象属性访问

#通过多级调用对象属性能够返回dataset中的img_path和img_label
print(train_loader.dataset.img_path)
print(train_loader.dataset.img_label)

在这里插入图片描述
在这里插入图片描述

2.5 本章小节

本章对数据读取进行了详细的讲解,并介绍了常见的数据扩增方法和使用,最后使用Pytorch框架对本次赛题的数据进行读取。

参考:Datawhale比赛说明指导

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读