给定一个元素都是正整数的数组A ,正整数 L 以及 R (L <= R)。
求连续、非空且其中最大元素满足大于等于L 小于等于R的子数组个数。
例如 :
输入:
A = [2, 1, 4, 3]
L = 2
R = 3
输出: 3
解释: 满足条件的子数组: [2], [2, 1], [3].
注意:
L, R 和 A[i] 都是整数,范围在 [0, 10^9]。
数组 A 的长度范围在[1, 50000]。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/number-of-subarrays-with-bounded-maximum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解:可以先算出小于等于R的子数组,通过遍历可得,再计算出小于L的子数组,最后相减即得。
class Solution {
public:
int numSubarrayBoundedMax(vector<int>& A, int L, int R) {
int len = A.size();
int sum1 = 0, count1 = 0,sum2 = 0, count2 = 0;
for(int i=0;i<len;i++)
{
if(A[i]<=R)
{
count1++;
sum1 += cou