C/C++算法实例(二)--图论算法

32 篇文章 0 订阅

1.最小生成树

A.Prim
算法:


procedure prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost[i]:=cost[v0,i];
closest[i]:=v0;
end;
for i:=1 to n-1 do begin
{
寻找离生成树最近的未加入顶点 k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]<min) and (lowcost[j]<>0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {
将顶点k加入生成树
}
{
生成树中增加一条新的边k
closest[k]}
{
修正各点的lowcostclosest
}
for j:=1 to n do
if cost[k,j]<lwocost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;{prim}

B.Kruskal
算法:(贪心)

按权值递增顺序删去图中的边,若不形成回路则将此边加入最小生成树。
function find(v:integer):integer; {
返回顶点v所在的集合 }
var i:integer;
begin
i:=1;
while (i<=n) and (not v in vset[i]) do inc(i);
if i<=n then find:=i else find:=0;
end;

procedure kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset[i]:=[i];{
初始化定义n个集合,第I个集合包含一个元素
I}
p:=n-1; q:=1; tot:=0; {p
为尚待加入的边数,q为边集指针
}
sort;
{
对所有边按权值递增排序,存于e[I]中,e[I].v1e[I].v2为边I所连接的两个顶点的序号,e[I].len为第I条边的长度
}
while p>0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i<>j then begin
inc(tot,e[q].len);
vset[i]:=vset[i]+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;

2.
最短路径


A.
标号法求解单源点最短路径:
var
a:array[1..maxn,1..maxn] of integer;
b:array[1..maxn] of integer; {b[i]
指顶点i到源点的最短路径 }
mark:array[1..maxn] of boolean;

procedure bhf;
var
best,best_j:integer;
begin
fillchar(mark,sizeof(mark),false);
mark[1]:=true; b[1]:=0;{1
为源点
}
repeat
best:=0;
for i:=1 to n do
If mark[i] then {
对每一个已计算出最短路径的点
}
for j:=1 to n do
if (not mark[j]) and (a[i,j]>0) then
if (best=0) or (b[i]+a[i,j]<best) then begin
best:=b[i]+a[i,j]; best_j:=j;
end;
if best>0 then begin
b[best_j]:=best
mark[best_j]:=true;
end;
until best=0;
end;{bhf}

B.Floyed
算法求解所有顶点对之间的最短路径:

procedure floyed;
begin
for I:=1 to n do
for j:=1 to n do
if a[I,j]>0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]
表示Ij的最短路径上j的前驱结点 }
for k:=1 to n do {
枚举中间结点
}
for i:=1 to n do
for j:=1 to n do
if a[i,k]+a[j,k]<a[i,j] then begin
a[i,j]:=a[i,k]+a[k,j];
p[I,j]:=p[k,j];
end;
end;

C. Dijkstra
算法:


var
a:array[1..maxn,1..maxn] of integer;
b,pre:array[1..maxn] of integer; {pre[i]
指最短路径上I的前驱结点
}
mark:array[1..maxn] of boolean;
procedure dijkstra(v0:integer);
begin
fillchar(mark,sizeof(mark),false);
for i:=1 to n do begin
d[i]:=a[v0,i];
if d[i]<>0 then pre[i]:=v0 else pre[i]:=0;
end;
mark[v0]:=true;
repeat {
每循环一次加入一个离1集合最近的结点并调整其他结点的参数
}
min:=maxint; u:=0; {u
记录离1集合最近的结点
}
for i:=1 to n do
if (not mark[i]) and (d[i]<min) then begin
u:=i; min:=d[i];
end;
if u<>0 then begin
mark[u]:=true;
for i:=1 to n do
if (not mark[i]) and (a[u,i]+d[u]<d[i]) then begin
d[i]:=a[u,i]+d[u];
pre[i]:=u;
end;
end;
until u=0;
end;

3.
计算图的传递闭包


Procedure Longlink;
Var
T:array[1..maxn,1..maxn] of boolean;
Begin
Fillchar(t,sizeof(t),false);
For k:=1 to n do
For I:=1 to n do
For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]);
End;


4
.无向图的连通分量

A.
深度优先
procedure dfs ( now,color: integer);
begin
for i:=1 to n do
if a[now,i] and c[i]=0 then begin {
对结点I染色 }
c[i]:=color;
dfs(I,color);
end;
end;

B
宽度优先(种子染色法)



5
.关键路径

几个定义:顶点1为源点,n为汇点。
a.
顶点事件最早发生时间Ve[j], Ve [j] = max{ Ve [j] + w[I,j] },其中 Ve (1) = 0;
b.
顶点事件最晚发生时间 Vl[j], Vl [j] = min{ Vl[j] – w[I,j] },其中
Vl(n) = Ve(n);
c.
边活动最早开始时间 Ee[I],若边I<j,k>表示,则
Ee[I] = Ve[j];
d.
边活动最晚开始时间 El[I],若边I<j,k>表示,则
El[I] = Vl[k] – w[j,k];
Ee[j] = El[j],则活动j为关键活动,由关键活动组成的路径为关键路径。

求解方法:
a.
从源点起topsort,判断是否有回路并计算 Ve;
b.
从汇点起topsort,
Vl;
c.
Ee
El;


6
.拓扑排序


找入度为0的点,删去与其相连的所有边,不断重复这一过程。
寻找一数列,其中任意连续p项之和为正,任意q项之和为负,若不存在则输出 NO.


7.
回路问题


Euler
回路 (DFS)
定义:经过图的每条边仅一次的回路。(充要条件:图连同且无奇点)


Hamilton
回路

定义:经过图的每个顶点仅一次的回路。

一笔画

充要条件:图连通且奇点个数为0个或2个。

9
.判断图中是否有负权回路 Bellman-ford算法


x[I],y[I],t[I]
分别表示第I条边的起点,终点和权。共n个结点和m条边。
procedure bellman-ford
begin
for I:=0 to n-1 do d[I]:=+infinitive;
d[0]:=0;
for I:=1 to n-1 do
for j:=1 to m do {
枚举每一条边 }
if d[x[j]]+t[j]<d[y[j]] then d[y[j]]:=d[x[j]]+t[j];
for I:=1 to m do
if d[x[j]]+t[j]<d[y[j]] then return false else return true;
end;

10
.第n最短路径问题


*
第二最短路径:每举最短路径上的每条边,每次删除一条,然后求新图的最短路径,取这些路径中最短的一条即为第二最短路径。

*
同理,第n最短路径可在求解第n-1最短路径的基础上求解。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值