洛谷 P2730 魔板 题解 DFS(广度优先搜索)

题目背景

在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板。这是一张有 8 个大小相同的格子的魔板:

1 2 3 4

8 7 6 5

题目描述

我们知道魔板的每一个方格都有一种颜色。这 8 种颜色用前 8 个正整数来表示。可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。对于上图的魔板状态,我们用序列 {1,2,3,4,5,6,7,8} 来表示。这是基本状态。

这里提供三种基本操作,分别用大写字母 A,B,C 来表示(可以通过这些操作改变魔板的状态):

AA:交换上下两行;

BB:将最右边的一列插入最左边;

CC:魔板中央四格作顺时针旋转。

下面是对基本状态进行操作的示范:

A:

8 7 6 5

1 2 3 4

B:

4 1 2 3

5 8 7 6

C:

1 7 2 4

8 6 3 5

对于每种可能的状态,这三种基本操作都可以使用。

你要编程计算用最少的基本操作完成基本状态到目标状态的转换,输出基本操作序列。

输入格式

只有一行,包括 8 个整数 a1​,a2​⋯a8​(1≤a1​,a2​⋯a8​≤8),用空格分开,不换行,表示目标状态。

输出格式

第一行包括一个整数,表示最短操作序列的长度。

第二行在字典序中最早出现的操作序列,用字符串表示,除最后一行外,每行输出 60 个字符。

输入输出样例

输入 

2 6 8 4 5 7 3 1 

输出 

7 
BCABCCB

思路:

1.首先处理把输入的最终状态转成字符串和构造出起始状态的字符串,易于后续判断和比较

string start;
string end1;
for(int i=1;i<=8;i++)
{
	start+=char(i+'0');
}
for(int i=0;i<8;i++)
{
	cin>>x;
	end1+=char(x+'0');
}

2. 字符串和二维数组的转换

void set2D(string s)//字符串转二维数组 
{
	for(int i=0;i<4;i++)
	{
		g[0][i]=s[i]-'0';
	}
	for(int i=3,j=4;i>=0;j++,i--)
	{
		g[1][i]=s[j]-'0';
	}
}

string returnstr()
{
	string s1;
	for(int i=0;i<=3;i++)
	{
		s1+=g[0][i]+'0';
	}
	for(int i=3;i>=0;i--)
	{
		s1+=g[1][i]+'0';
	}
	return s1;
} 

3. A,B,C的操作

string moveA(string s)
{
	set2D(s);
	for(int i=0;i<4;i++)
	{
		swap(g[0][i],g[1][i]);
	}
	return returnstr();
}

string moveB(string s)
{
	set2D(s);
	int a=g[0][3],b=g[1][3];
	for(int i=3;i>=1;i--)
	{
		g[0][i]=g[0][i-1];
		g[1][i]=g[1][i-1];
	}
	g[0][0]=a,g[1][0]=b;
	return returnstr();
}

string moveC(string s)
{
	set2D(s);
	int tmpt=g[0][1];
	g[0][1]=g[1][1];
	g[1][1]=g[1][2];
	g[1][2]=g[0][2];
	g[0][2]=tmpt;
	return returnstr();
}

4.用dist数组记录所需的步数,pre数组存储此次操作序号以及该字符串是由那个字符串转换过来的,确保最后可以输出全部操作序号

5.dfs的常规思路,符合条件进队,找到目标就返回

AC code

#include <iostream>
#include <algorithm>
#include <string>
#include <cstring>
#include <unordered_map>查找数比map快
using namespace std;
typedef pair<char, string> CS;
unordered_map<string, int> dist;
unordered_map<string, CS> pre;
string q[100001];
int g[5][5];

void set2D(string s)//字符串转二维数组 
{
	for (int i = 0; i < 4; i++)
	{
		g[0][i] = s[i] - '0';
	}
	for (int i = 3, j = 4; i >= 0; j++, i--)
	{
		g[1][i] = s[j] - '0';
	}
}

string returnstr()
{
	string s1;
	for (int i = 0; i <= 3; i++)
	{
		s1 += g[0][i] + '0';
	}
	for (int i = 3; i >= 0; i--)
	{
		s1 += g[1][i] + '0';
	}
	return s1;
}

string moveA(string s)
{
	set2D(s);
	for (int i = 0; i < 4; i++)
	{
		swap(g[0][i], g[1][i]);
	}
	return returnstr();
}

string moveB(string s)
{
	set2D(s);
	int a = g[0][3], b = g[1][3];
	for (int i = 3; i >= 1; i--)
	{
		g[0][i] = g[0][i - 1];
		g[1][i] = g[1][i - 1];
	}
	g[0][0] = a, g[1][0] = b;
	return returnstr();
}

string moveC(string s)
{
	set2D(s);
	int tmpt = g[0][1];
	g[0][1] = g[1][1];
	g[1][1] = g[1][2];
	g[1][2] = g[0][2];
	g[0][2] = tmpt;
	return returnstr();
}

int dfs(string start, string end1)
{
	q[0] = start;
	dist[start] = 0;
	int tt = 0, hh = 0;

	while (hh <= tt)
	{
		string t = q[hh++];
		if (t == end1) return dist[end1];

		string m[3];
		m[0] = moveA(t);
		m[1] = moveB(t);
		m[2] = moveC(t);

		for (int i = 0; i < 3; i++)
		{
			string s = m[i];
			if (!dist.count(s)) {
				dist[s] = dist[t] + 1;
				pre[s] = { char('A' + i),t };
				q[++tt] = s;
			}
			if (s == end1) return dist[end1];
		}
	}
	return -1;
}


int main()
{
	int x;
	string start;
	string end1;
	for (int i = 1; i <= 8; i++)
	{
		start += char(i + '0');
	}
	for (int i = 0; i < 8; i++)
	{
		cin >> x;
		end1 += char(x + '0');
	}
	int c = dfs(start, end1);
	cout << c << endl;
	string t;
	while (end1 != start)
	{
		t += pre[end1].first;
		end1 = pre[end1].second;
	}
	reverse(t.begin(), t.end());
	cout << t;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值