【吴恩达机器学习】章节2 单变量线性回归

目录:

+ 模型描述

+ 代价函数

+ 梯度下降

+ 线性回归的梯度下降

 

第一个学习的是监督学习中的线性回归算法

例子:房价预测

一·模型描述

- 在监督学习中,数据集被称为训练集

- 字母m 表示训练样本的数量

- 字母x  表示输入变量

- 字母y  表示输出变量

- (x,y) 表示一个训练样本

- (x^{^{(i)}},y^{^{(i)}}) 表示第i个训练样本

 

监督学习算法:从最简单的单变量线性回归学起

 

二·代价函数

上图的J(\theta_{_{0}},\theta_{_{1}})表示的就是平方误差代价函数,尽量减少假设的输出与房子真实价格之间差的平方,它对于回归问题是一个合理的选择。

下面使用简化的代价函数(只经过原点)来更好滴理解:

对于每个\theta_{_{1}}都对应一个J(\theta _{1})值,描绘出下图,学习算法的优化目标是通过选择\theta_{_{1}}的值获得最小的J(\theta _{1}),这就是线性回归的目标函数。在这条曲线中,当\theta_{_{1}}=1时,J(\theta _{1})最小,完美拟合了数据集。

接下来看两个参数的时候,横轴是两个参数,纵轴是代价函数。

三维图

等高线图

通过这些图可以更好地理解代价函数J的意义,如何对应不同的假设函数以及接近代价函数J最小值的点对应着更好的假设函数。

如何自动寻找最小点呢?而不是人工读取(高维无法可视化)

 

三·梯度下降

起始点偏移一些会得到一个完全不同的局部最优解。

数学定义,同步更新

以一个参数为例,介绍导数项的作用

\alpha学习速率太小,下降速度太慢;速率大大,会无法收敛。

问题:如果已经处于最低点,下一步会怎么办?

导数为0,\theta值不会改变在梯度下降法中,当我们接近局部最低点时,梯度下降会自动采取更小的幅度,这是因为这个过程中,导数值越来越小一直到0,所以不需要在整个过程中考虑减小学习速率。

 

四·线性回归的梯度下降

将梯度下降和代价函数结合得到线性回归算法

计算偏导:

梯度下降算法,同时更新:

线性回归的代价函数总是凸函数,没有局部最优,只有全局最优。

假设函数和代价函数的形象展示:

算法被称作“Batch:"梯度下降,意味着每一步梯度下降我们都遍历整个训练集的样本(在梯度下降中,当计算偏导数时我们计算总和,在每一个单独的梯度下降,计算m个训练样本的总和)还有只关注小子集,还可以使用正规方程组解法,但前者适用于大数据集。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值