CVPR2024|Diffusion模型轻量化与计算效率优化

前言

做算法应该都有顶会梦吧,发不了顶会只能刷一刷顶会了哈哈,向顶会大佬学习
扩散模型的训练和推理都需要巨大的计算成本(显卡不足做DDPM的下游任务实在是太难受了),所以本文整理汇总了部分CVPR2024中关于扩散模型的轻量化与计算效率优化 的相关论文。


1、Diffusion Models Without Attention

Author:Jing Nathan Yan, Jiatao Gu, Alexander M. Rush
paper:https://arxiv.org/pdf/2311.18257

虽然去噪概率扩散模型(DDPMs)在图像生成方面取得了显著的进展,但在高分辨率应用中面临巨大的计算挑战,特别是依赖于自注意力机制导致计算复杂度呈二次方增长(训练过DDPM的朋友应该都对显存有着巨大渴望吧)。目前大部分解决办法都是通过加快Unet和Transformer架构中的进程,但是这样会牺牲模型的生成能力。

为了解决此问题,本文提出了扩散状态空间模型(DIFFUSSM),这是一种无需注意力机制的扩散架构,使用门控状态空间模型(SSM)作为扩散过程中的骨干网络。DIFFUSSM通过避免全局压缩来有效处理更高分辨率的图像,从而在整个扩散过程中保留详细的图像表示。

DIFFUSSM利用了长范围SSM核心和沙漏式前馈网络的交替层,不使用U-Nets或Transformers中的patchification或长范围块的缩放。采用了门控双向SSM作为核心组件,并通过hourglass架构提高效率。

论文在ImageNet和LSUN数据集上进行了评估,结果表明DIFFUSSM在FID和Inception Score指标上与现有带注意力模块的扩散模型相当或更优,同时显著减少了总的FLOP使用。

2、Fixed Point Diffusion Models

Author:Xingjian Bai, Luke Melas-Kyriazi
paper:https://arxiv.org/pdf/2401.08741
code:https://github.com/lukemelas/fixed-point-diffusion-models

本文提出了一种定点扩散模型(FPDM),在扩散模型中集成了固定点求解概念,通过在去噪网络中嵌入隐式固定点求解层,将扩散过程转化为一系列相关的固定点

<think>好的,用户想了解如何使用扩散模型实现头像的卡通化风格生成。首先,我需要回忆扩散模型的基本原理。扩散模型通过逐步去噪生成图像,包括前向加噪和反向去噪两个过程。那如何将普通头像转化为特定卡通风格呢?可能需要结合条件生成的方法,比如使用文本提示或风格参考图像作为条件输入。 接下来,用户提供的参考引用中提到生成对抗网络(GAN)用于照片转宫崎骏风格,但用户现在问的是扩散模型。扩散模型在图像生成和编辑方面有优势,比如Stable Diffusion模型。所以需要将扩散模型风格迁移结合。 可能的步骤包括:数据准备(收集卡通风格数据集)、模型选择(预训练的扩散模型,如Stable Diffusion)、条件控制(使用CLIP编码文本提示,如“宫崎骏风格”),或者基于参考图像的风格控制。此外,可能需要微调模型,使用LoRA等轻量级适配器,避免全参数训练的高成本。 另外,用户的问题涉及到头像,可能需要人脸检测和对齐,确保生成结果的质量。还要考虑后处理步骤,比如超分辨率或颜色调整,以提升视觉效果。同时,引用中提到的CVPR2024论文可能有最新的方法,比如3D生成或多模态模型的应用,但用户的问题更偏向2D图像生成,所以可能需要参考图像生成和编辑的部分。 需要验证技术细节是否正确,比如条件扩散模型的具体实现方式,是否有开源的代码或工具可用。例如,Stable Diffusion的ControlNet可以用于添加边缘检测等条件控制,或许可以应用于风格迁移。此外,评估生成效果的方法,比如用户研究或自动化指标,也是需要考虑的。 最后,生成相关问题时要围绕扩散模型的应用、优化方法、其他模型的对比,以及具体实施中的挑战等方向,帮助用户深入理解该主题。</think>### 扩散模型实现头像卡通化风格的技术路径 #### 1. **核心原理** 扩散模型通过逐步去噪生成图像,其核心分为**前向加噪**和**反向去噪**两个过程。在头像卡通化任务中,模型需要学习如何将真实人像的噪声分布映射到目标卡通风格的干净分布,并通过条件控制(如文本提示或风格参考图)引导生成过程[^2]。 #### 2. **关键技术步骤** - **数据准备** 收集配对的真实人像目标风格卡通图像数据集,例如《千千寻》风格数据。若数据不足,可通过预训练模型(如Stable Diffusion)进行数据增强。 - **条件控制设计** - **文本提示**:通过CLIP编码器注入风格描述,例如: $$ \text{Prompt} = \text{"Miyazaki-style cartoon, soft shading, vibrant colors"} $$ - **参考图控制**:使用ControlNet等架构,将风格参考图的边缘/色彩分布作为条件输入。 - **轻量化微调** 采用LoRA(Low-Rank Adaptation)技术,冻结基础模型权重,仅训练低秩矩阵适配目标风格,公式表示为: $$ W' = W + \alpha \cdot BA $$ 其中$B \in \mathbb{R}^{d \times r}$, $A \in \mathbb{R}^{r \times k}$为可训练参数,$r \ll d$[^1]。 #### 3. **实现代码示例(PyTorch伪代码)** ```python from diffusers import StableDiffusionPipeline, ControlNetModel import torch # 加载预训练模型和ControlNet controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", controlnet=controlnet) # 生成过程 def generate_cartoon_avatar(image, prompt): # 提取边缘图作为条件 canny_condition = extract_edge(image) # 引导生成 result = pipe( prompt=prompt, image=canny_condition, guidance_scale=7.5 ).images[0] return result ``` #### 4. **效果优化策略** - **混合条件增强**:同时使用文本提示和风格图CLIP嵌入 - **渐进式生成**:先生成低分辨率草图,再通过超分模型(如ESRGAN)提升细节 - **对抗性训练**:添加轻量判别器网络强化风格特征
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值