前言
做算法应该都有顶会梦吧,发不了顶会只能刷一刷顶会了哈哈,向顶会大佬学习
扩散模型的训练和推理都需要巨大的计算成本(显卡不足做DDPM的下游任务实在是太难受了),所以本文整理汇总了部分CVPR2024中关于扩散模型的轻量化与计算效率优化 的相关论文。
文章目录
- 前言
- 1、Diffusion Models Without Attention
- 2、Fixed Point Diffusion Models
- 3、Towards More Accurate Diffusion Model Acceleration with A Timestep Tuner
- 4、Attention-Driven Training-Free Efficiency Enhancement of Diffusion Models
- 5、Improving Training Efficiency of Diffusion Models via Multi-Stage Framework and Tailored Multi-Decoder Architecture
- 6、DeepCache: Accelerating Diffusion Models for Free
- 7、Accelerating Diffusion Sampling with Optimized Time Steps
- 总结
1、Diffusion Models Without Attention
Author:Jing Nathan Yan, Jiatao Gu, Alexander M. Rush
paper:https://arxiv.org/pdf/2311.18257
虽然去噪概率扩散模型(DDPMs)在图像生成方面取得了显著的进展,但在高分辨率应用中面临巨大的计算挑战,特别是依赖于自注意力机制导致计算复杂度呈二次方增长(训练过DDPM的朋友应该都对显存有着巨大渴望吧)。目前大部分解决办法都是通过加快Unet和Transformer架构中的进程,但是这样会牺牲模型的生成能力。
为了解决此问题,本文提出了扩散状态空间模型(DIFFUSSM),这是一种无需注意力机制的扩散架构,使用门控状态空间模型(SSM)作为扩散过程中的骨干网络。DIFFUSSM通过避免全局压缩来有效处理更高分辨率的图像,从而在整个扩散过程中保留详细的图像表示。
DIFFUSSM利用了长范围SSM核心和沙漏式前馈网络的交替层,不使用U-Nets或Transformers中的patchification或长范围块的缩放。采用了门控双向SSM作为核心组件,并通过hourglass架构提高效率。
论文在ImageNet和LSUN数据集上进行了评估,结果表明DIFFUSSM在FID和Inception Score指标上与现有带注意力模块的扩散模型相当或更优,同时显著减少了总的FLOP使用。
2、Fixed Point Diffusion Models
Author:Xingjian Bai, Luke Melas-Kyriazi
paper:https://arxiv.org/pdf/2401.08741
code:https://github.com/lukemelas/fixed-point-diffusion-models
本文提出了一种定点扩散模型(FPDM),在扩散模型中集成了固定点求解概念,通过在去噪网络中嵌入隐式固定点求解层,将扩散过程转化为一系列相关的固定点