LINE

LINE: Large-scale Information Network Embedding

概述

  • LINE是一种Graph Embedding的方法,在非NN的方法中是比较好的。
  • LINE的提出:考虑到因式分解的方法只适用于无向图、且只考虑一阶的相似关系;而DeepWalk方法没有明确表现出维持了什么特征。
  • 所以LINE实现了可用于有向无向图、有权无权,以及维持了局部和全局结构(主要是二阶)。另外提出了一种边采样方法。

依据:真是世界的网络中,很多关系是没能被直接观测到的(即一阶相似性first-order),但他们可以通过邻居实现间接关联的(二阶相似性second-order)

定义

  1. 图、点、边——G、V、E,权重用w
  2. 一阶相似性,指直接相连的两个点(即边),权重即相似性,不相连则为0;一阶相似性通常表示两个直接关联物体,
  3. 二阶相似性,指结点的邻居之间的相似性。 p u = ( w u , 1 , . . . , w u , ∣ V ∣ ) p_u=(w_{u,1},...,w_{u,|V|}) pu=(wu,1,...,wu,V)表示结点u与邻居的的一阶相似性,则二阶相似性用 p u p_u pu p v p_v pv表示,若u,v没有共同邻居,则二阶相似性为0
  4. LINE(Large-scale Information Network Embedding)

建模

  1. 一阶相似性建模
    p 1 ( v i , v j ) = 1 1 + e x p ( − u ⃗ i T ⋅ u ⃗ j ) p_1(v_i,v_j)=\frac{1}{1+exp(-\vec{u}^T_i \cdot \vec{u}_j)} p1(vi,vj)=1+exp(u iTu j)1
    其中
    u ⃗ i ∈ R d \vec{u}_i \in R^d u iRd是结点 v i v_i vi的低维向量表示
    p ( ⋅ , ⋅ ) p(\cdot,\cdot) p(,)是空间V*V的分布,其经验概率为 p ^ 1 ( i , j ) = w i j W \hat{p}_1(i,j)=\frac{w_{ij}}{W} p^1(i,j)=Wwij, W = ∑ ( i , j ) ∈ E w i j W=\sum_{(i,j)\in E}w_{ij} W=(i,j)Ewij
    那么为了保持一阶相似性,则最小化目标函数:
    O 1 = d ( p ^ 1 ( ⋅ , ⋅ ) , p 1 ( ⋅ , ⋅ ) ) O_1=d(\hat{p}_1(\cdot,\cdot),p_1(\cdot,\cdot)) O1=d(p^1(,),p1(,))
    d ( ⋅ , ⋅ ) d(\cdot,\cdot) d(,)表示两个分布的距离,如KL散度则为
    O 1 = − ∑ ( i , j ) ∈ E w i j log ⁡ p 1 ( v i , v j ) O_1=-\sum_{(i,j)\in E}w_{ij} \log p_1(v_i,v_j) O1=(i,j)Ewijlogp1(vi,vj)

注意:一阶相似性只适用于无向图

  1. 二阶相似性
    p 2 ( v j ∣ v i ) = e x p ( u ⃗ k ′ ⋅ u ⃗ i ) ∑ k = 1 ∣ V ∣ e x p ( u ⃗ k ′ ⋅ u ⃗ i ) p_2(v_j|v_i)=\frac{exp(\vec{u}'_k\cdot \vec{u}_i)}{\sum_{k=1}^{|V|} exp(\vec{u}'_k\cdot \vec{u}_i)} p2(vjvi)=k=1Vexp(u ku i)exp(u ku i)
    其中
    u ⃗ i ′ \vec{u}'_i u i是结点 v i v_i vi的“上下文”(邻居)低维向量表示
    同样,使得环境的条件概率分布和经验条件概率近似
    O 2 = ∑ i ∈ V λ i d ( p ^ 2 ( ⋅ ∣ v i ) , p 2 ( ⋅ ∣ v i ) ) O_2=\sum_{i\in V}\lambda_{i} d(\hat{p}_2(\cdot|v_i),p_2(\cdot|v_i)) O2=iVλid(p^2(vi),p2(vi))
    p ^ 2 ( ⋅ ∣ v i ) = w i j d i \hat{p}_2(\cdot|v_i)=\frac{w_{ij}}{d_i} p^2(vi)=diwij,di是结点i的出度, d i = ∑ k ∈ N ( i ) w i k d_i=\sum_{k\in N(i)} w_{ik} di=kN(i)wik
    O 2 = − ∑ ( i , j ) ∈ E w i j log ⁡ p 2 ( v j ∣ v i ) O_2=-\sum_{(i,j)\in E}w_{ij} \log p_2(v_j|v_i) O2=(i,j)Ewijlogp2(vjvi)

以后再补吧。。。

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值