组合数快速求解

 对于组合数中要求C(N,M)的话,一般常用的方法就是对除号的上下分别进行质因子分解,但同样是质因子分解也可以有不同的解法.

  下面给出一种较快的方法:

  将(n!)质因数分解的算法

  (注意是直接分解(n!),而不是将(1,2,3...n)一项一项分解)

  如果k是一个质数,f(k)表示里质因数K的个数

  f(k)=n/k+n/(k*k)+n/(k+k+k)+...n/(k^m);

  其中m是使n/(k^m)是正数的最大的整数;

  下面给出核心部分的代码:

  01 while (biao[j]<=n)//N为要分解的阶乘

  02     {

  03           int q=biao[j];//biao数组中记录的是质数表.

  04           while (q<=n)

  05           {

  06                 timee[j]+=(n/q);//将质因子的次数存入TIMEE中。

  07                 q=q*biao[j];

  08           }

  09           j++;

  10     }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值