组合数的求解方式:

 组合数的第一种枚方式: 求c[a][b]

c[a][b]:  a * (a - 1) * (a - 2) * .... * (a - b + 1) / [ b * (b- 1) * (b - 2) * ... 1]

如果要用这个方式的话,需要注意

a 从大到小枚举  ,  b 从小到大枚举.

因为a 从大到小枚举 和 b 从大到小枚举,可能会出现答案不准确的情况。

代码:

# include <iostream>
using namespace std;

int main()
{
    int a,b;
    scanf("%d %d",&a,&b);
    int temp = 1;
    for(int i = a  , j = 1 ; j <= b ; i-- , j++ )
    {
        temp = temp * i / j;
    }
    printf("%d\n",temp);
    return 0;
}

组合数的第二种方式:(a,b)小但是询问次数多时

时间复杂度:O(a * b) 

原理: c[a][b] = c[a - 1][b] + c[a][b];

# include <iostream>
using namespace std;
const int N = 2010 , mod = 1e9 + 7;
int n;

int c[N][N];

int main()
{
    for(int i = 0 ; i < N ; i++)
    {
        for(int j = 0 ; j <= i ; j++)
        {
            if(!j)
            {
                c[i][j] = 1;
            }
            else
            {
                c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]);
            }
        }
    }
    scanf("%d",&n);
    while(n--)
    {
        int a,b;
        scanf("%d %d",&a,&b);
        printf("%d\n",c[a][b]);
    }
    return 0;
}

组合数的第三种方式:a,b大概在10^5左右时

时间复杂度:O(nlogn)

原理: c[a][b] = a !  /  (  b ! * (a - b) !) , 所以我们预处理出所有阶乘和 阶乘的逆

# include <iostream>
using namespace std;

const int N = 1e5 + 10 , mod = 1e9 + 7;

int fact[N],infact[N];

int n;

int qmi(int a ,int b , int mod)
{
    int res = 1;
    while(b)
    {
        if(b & 1)
        {
            res = (long long)res * a % mod;
        }
        b >>= 1;
        a = (long long)a * a % mod;
    }
    return res;
}

int main()
{
    fact[0] = infact[0] = 1;
    for(int i = 1 ; i < N ; i++)
    {
        fact[i] = (long long)fact[i - 1] * i % mod;
        infact[i] = (long long)infact[i - 1] * qmi(i,mod -2 , mod) % mod;
    }
    
    scanf("%d",&n);
    while(n--)
    {
        int a,b;
        scanf("%d %d",&a,&b);
        printf("%lld\n",(long long)fact[a] * infact[a - b] % mod * infact[b] % mod);
    }
    return 0;
}

 组合数的第四种方式:a,b很大,但是 % mod的mod的值很小时

时间复杂度:p * log[p][a] * log[2][p]

原理:c[a][b] = c[a % mod][b % mod] * c[a / mod][b / mod] 

# include <iostream>
using namespace std;

int qmi(int a , int b , int p)
{
    int res = 1;
    while(b)
    {
        if(b & 1)
        {
            res =  (long long)res * a % p;
        }
        b >>= 1;
        a = (long long)a * a % p;
    }
    return res;
}

int c(int a , int b , int p)
{
    int res = 1;
    for(int i = 1 , j = a ; i <= b ; i++,j--)
    {
        res = (long long)res * j % p;
        res = (long long)res * qmi(i,p - 2 , p)  % p;
    }
    return res;
}

int lucas(long long a ,long long b ,long long p)
{
    if(a < p && b < p)
    {
        return c(a,b,p);
    }
    return (long long)c(a % p , b % p , p) * lucas(a / p , b / p , p) % p;
}

int main()
{
    int n;
    scanf("%d",&n);
    while(n--)
    {
        long long a,b,p;
        scanf("%lld %lld %lld",&a,&b,&p);
        printf("%d\n",lucas(a,b,p));
    }
    return 0;
}

组合数的第五种方式:使用高精度求解

原理:还是使用 c[a][b] == a ! / b! / (a - b)!

方式:我们可以使用筛质数的方式,通过筛质数的方式筛出a!,b!,(a-b)!中的质数和对应的指数.

然后通过高精度的方式求解出来。

# include <iostream>
# include <vector>
using namespace std;

const int N = 5010;

int prim[N],cnt;
bool choose[N];
int sum[N];

void get_prim(int a) // 线性筛质数
{
    for(int i = 2; i <= a ; i++)
    {
        if(!choose[i])
        {
            prim[++cnt] = i;
        }
        for(int j = 1 ; prim[j] <= a / i ; j++)
        {
            choose[i * prim[j]] = true;
            if(i % prim[j] == 0)
            {
                break;
            }
        }
    }
}

int get(int x , int p) // 求阶乘x! 关于 p 的指数 
{
    int res = 0;
    while(x)
    {
        res += x / p;
        x /= p;
    }
    return res;
}

vector<int> mul(vector<int> t , int p)
{
    int d = 0;
    vector<int> c;
    for(int i = 0 ; i < t.size() || d; i++)
    {
        if(i < t.size())
        {
            d += t[i] * p;
        }
        c.push_back(d % 10);
        d /= 10;
    }
    return c;
}

int main()
{
    int a,b;
    scanf("%d %d",&a,&b);
    get_prim(a);
    
    for(int i = 1 ; i <= cnt ; i++)
    {
        int p = prim[i];
        sum[i] = get(a,p) - get((a - b),p) - get(b,p); // 对应的p的指数  
    }
    
    vector<int> t;
    t.push_back(1);
    
    for(int i = 1 ; i <= cnt ; i++)
    {
        int p = prim[i];
        for(int j = 1 ; j <= sum[i] ; j++)
        {
            t = mul(t,p);
        }
    }
    for(int i = t.size() - 1; i >= 0 ; i--)
    {
        printf("%d",t[i]);
    }
    printf("\n");
    return 0;
}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值