今天看到NIPS官网开放了部分录用文章的Spotlight Videos,迫不及待撸了一遍,特别将一些有趣、有料的highlight出来分享给大家。文章链接均为油管视频,戳前请翻墙(排名不分先后,但根据自己的兴趣在每篇文章后用“★”标记出了推荐指数,五星为最高)。
-
Fast and Provably Good Seedings for k-Means
传统k-Means算法受初始化影响较大,虽然后来有k-Means++算法来优化初始化结果,但该算法不能适用于海量数据。本文提出了一种新的更优且高效的针对k-Means初始化方法(oral paper)★★★
-
Hierarchical Question-Image Co-Attention for Visual Question Answering
针对VQA提出不仅要在image domain需要attention,同时为了增加鲁棒性还需在question domain同样加入attention;★★
-
Residual Networks Behave Like Ensembles of Relatively Shallow Networks
实验角度探究了ResNet,提出ResNet更像很多小网络的集成。比较有意思的paper;★★★★★
-
Boosting with Abstention
利用Boosting框架处理了当有“弃权”情况产生时的分类情况;★★
-
Stochastic Multiple Choice Learning for Training Diverse Deep Ensembles
多个深度模型集成算法;★★★★
-
Active Learning from Imperfect Labelers
提出一种adaptive算法以处理主动学习中labeler不不确定的情况;★★
-
Deep learning for Human Strategic Behaviour
顾名思义,同时也是一篇oral。另外,视频做的很有趣:)★★
-
Improved dropout for shallow deep learning
提出一种改进版本dropout★★★★
-
Single Pass PCA of Matrix Products
解决了大矩阵PCA分解问题★★★
-
Convolutional Neural Fabrics
抽象化CNN,学习网络结构 ★★★★
-
Learning Deep Embeddings with Histogram Loss
提出无参的Histogram loss进一步优化深度模型特征嵌入;★★★
-
Tagger: Deep Unsupervised Perceptual Grouping
很有料的文章,另外视频很赞,建议授予“最佳视频奖”:)★★★★★