NIPS 2016 Highlighted Papers

今天看到NIPS官网开放了部分录用文章的Spotlight Videos,迫不及待撸了一遍,特别将一些有趣、有料的highlight出来分享给大家。文章链接均为油管视频,戳前请翻墙(排名不分先后,但根据自己的兴趣在每篇文章后用“”标记出了推荐指数,五星为最高)。


  • Fast and Provably Good Seedings for k-Means

    传统k-Means算法受初始化影响较大,虽然后来有k-Means++算法来优化初始化结果,但该算法不能适用于海量数据。本文提出了一种新的更优且高效的针对k-Means初始化方法(oral paper)★★★


  • Hierarchical Question-Image Co-Attention for Visual Question Answering

    针对VQA提出不仅要在image domain需要attention,同时为了增加鲁棒性还需在question domain同样加入attention;★★


  • Residual Networks Behave Like Ensembles of Relatively Shallow Networks

    实验角度探究了ResNet,提出ResNet更像很多小网络的集成。比较有意思的paper;★★★★★


  • Boosting with Abstention

    利用Boosting框架处理了当有“弃权”情况产生时的分类情况;★★


  • Stochastic Multiple Choice Learning for Training Diverse Deep Ensembles

    多个深度模型集成算法;★★★★


  • Active Learning from Imperfect Labelers

    提出一种adaptive算法以处理主动学习中labeler不不确定的情况;★★


  • Deep learning for Human Strategic Behaviour

    顾名思义,同时也是一篇oral。另外,视频做的很有趣:)★★


  • Improved dropout for shallow deep learning

    提出一种改进版本dropout★★★★


  • Single Pass PCA of Matrix Products

    解决了大矩阵PCA分解问题★★★


  • Convolutional Neural Fabrics

    抽象化CNN,学习网络结构 ★★★★


  • Learning Deep Embeddings with Histogram Loss

    提出无参的Histogram loss进一步优化深度模型特征嵌入;★★★


  • Tagger: Deep Unsupervised Perceptual Grouping

    很有料的文章,另外视频很赞,建议授予“最佳视频奖”:)★★★★★

转自:https://zhuanlan.zhihu.com/p/24158507
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值