推荐系统之基于用户协同过滤

基于用户的协同过滤就是找到与该用户最相似的几个用户,然后再找出这几个用户喜欢的交集,交集中要去除该用户已经看过的,然后对该用户进行推荐。

一般系统中用户数据的来源:采集用户过往的痕迹,搜索记录,评分,观看之类的。

计算相似度的方法:
1.余弦相似度
|A* B| / np.sqrt(|A|*|B|)
2.Jaccard 系数
|A∩B|/|A∪B|

相似度计算方法可以根据自己的意愿进行改进

数据来源:网上的电影数据,1M的

1.定义cf类
class Usercf(self):
	def __init__(self):
		self.data = pd.read_csv("ratings.csv")
	def _cosine_sim(self):
	def _get_top_n_users(self):
	def _get_candidates_items(self):
	def _get_top_n_items(self):
	def calculate(self):
2.实现余弦相似度计算函数
    def _cosine_sim(target_movies, movies):
        '''
        simple method for calculate cosine distance.
        e.g: x = [1 0 1 1 0], y = [0 1 1 0 1]
             cosine = (x1*y1+x2*y2+...) / [sqrt(x1^2+x2^2+...)+sqrt(y1^2+y2^2+...)]
             that means union_len(movies1, movies2) / sqrt(len(movies1)*len(movies2))
        此处用交集运算来代替乘法运算,不用对数组进行对齐操作,方便计算
        '''
        union_len = len(set(target_movies) & set(movies))
        if union_len == 0: return 0.0
        product = len(target_movies) * len(movies)
        cosine = union_len / math.sqrt(product)
        return cosine
3.计算相似度最高的top_n用户
    def _get_top_n_users(self, target_user_id, top_n):
        '''
        calculate similarity between all users and return Top N similar users.
        '''
        #获取用户看过的电影列表
        target_movies = self.data[self.data['UserID'] == target_user_id]['MovieID']
        #获取其他用户名
        other_users_id = [i for i in set(self.data['UserID']) if i != target_user_id]
        #获取其他用户看过的电影列表
        other_movies = [self.data[self.data['UserID'] == i]['MovieID'] for i in other_users_id]
		#计算各个用户与该用户的相似度,并进行排序,返回top_n相似度用户
        sim_list = [self._cosine_sim(target_movies, movies) for movies in other_movies]
        sim_list = sorted(zip(other_users_id, sim_list), key=lambda x: x[1], reverse=True)
        return sim_list[:top_n]
4.获取该用户没有看过而其他用户看过的电影列表
    def _get_candidates_items(self, target_user_id):
        """
        Find all movies in source data and target_user did not meet before.
        """
        target_user_movies = set(self.data[self.data['UserID'] == target_user_id]['MovieID'])
        other_user_movies = set(self.data[self.data['UserID'] != target_user_id]['MovieID'])
        candidates_movies = list(target_user_movies ^ other_user_movies)
        return candidates_movies
5.获取最相似的几个用户喜欢的交集top_n进行推荐
    def _get_top_n_items(self, top_n_users, candidates_movies, top_n):
        """
        calculate interest of candidates movies and return top n movies.
        e.g. interest = sum(sim * normalize_rating)
        """
        top_n_user_data = [self.data[self.data['UserID'] == k] for k, _ in top_n_users]
        interest_list = []
        for movie_id in candidates_movies:
            tmp = []
            for user_data in top_n_user_data:
                if movie_id in user_data['MovieID'].values:
                    tmp.append(user_data[user_data['MovieID'] == movie_id]['Rating'].values[0]/5)
                else:
                    tmp.append(0)
            interest = sum([top_n_users[i][1] * tmp[i] for i in range(len(top_n_users))])
            interest_list.append((movie_id, interest))
        interest_list = sorted(interest_list, key=lambda x: x[1], reverse=True)
        return interest_list[:top_n]
6.函数整合
    def calculate(self, target_user_id=1, top_n=10):
        """
        user-cf for movies recommendation.
        """
        # most similar top n users
        top_n_users = self._get_top_n_users(target_user_id, top_n)
        # candidates movies for recommendation
        candidates_movies = self._get_candidates_items(target_user_id)
        # most interest top n movies
        top_n_movies = self._get_top_n_items(top_n_users, candidates_movies, top_n)
        return top_n_movies

cf算法存在的问题:
冷启动问题:
即新系统没有用户的使用记录,就无法使用该模型,一个老系统加入一个新用户时,也无法使用该模型进行推荐。

解决方案:

  • 可以再新用户使用该系统时,加入一个个性化推荐方案,然后根据用户的选择,对用户进行推荐,比如女生推荐化妆品,男生推荐游戏。
  • 一些大型公司也可以根据用户其他软件的使用记录进行推荐,比如腾讯,在新用户使用腾讯微视时,可以按照qq上面的浏览记录进行推荐。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值