If a and d are relatively prime positive integers, the arithmetic sequence beginning with a and increasing by d, i.e., a, a + d, a + 2d, a + 3d, a + 4d, ..., contains infinitely many prime numbers. This fact is known as Dirichlet's Theorem on Arithmetic Progressions, which had been conjectured by Johann Carl Friedrich Gauss (1777 - 1855) and was proved by Johann Peter Gustav Lejeune Dirichlet (1805 - 1859) in 1837.
For example, the arithmetic sequence beginning with 2 and increasing by 3, i.e.,
2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, ... ,
contains infinitely many prime numbers
2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, ... .
Your mission, should you decide to accept it, is to write a program to find the nth prime number in this arithmetic sequence for given positive integers a, d, and n.
Input
The input is a sequence of datasets. A dataset is a line containing three positive integers a, d, and n separated by a space. a and d are relatively prime. You may assume a <= 9307, d <= 346, and n <= 210.
The end of the input is indicated by a line containing three zeros separated by a space. It is not a dataset.
Output
The output should be composed of as many lines as the number of the input datasets. Each line should contain a single integer and should never contain extra characters.
The output integer corresponding to a dataset a, d, n should be the nth prime number among those contained in the arithmetic sequence beginning with a and increasing by d.
FYI, it is known that the result is always less than 106 (one million) under this input condition.
Sample Input
367 186 151 179 10 203 271 37 39 103 230 1 27 104 185 253 50 85 1 1 1 9075 337 210 307 24 79 331 221 177 259 170 40 269 58 102 0 0 0
Sample Output
92809 6709 12037 103 93523 14503 2 899429 5107 412717 22699 25673
这道题最简单的做法就是从a开始判断是否为素数,然后是a+d,a+2d,,,直到找到第n个素数,输出,我试了一下,176K 235MS,不算很快,但比较省空间
还有就是用筛法求素数,从2开始,不断向后筛掉当前素数的倍数,借用一个bool数组实现,1152K 63MS,算是用空间换取时间吧
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 1e6;
bool b[N];
int main()
{
int a, d, n, i, j;
memset(b, 1, sizeof(b));
b[0] = b[1] = 0;
for(i = 2; i < N; i++)
{
if(b[i])
{
for(j = 2; j < N/i; j++)
b[i*j] = 0;
}
}
while(~scanf("%d%d%d", &a, &d, &n))
{
if(a == 0) break;
int cnt = 0;
for(i = a; i < N; i += d)
{
if(b[i])
{
cnt++;
if(cnt == n)
{
printf("%d\n", i);
break;
}
}
}
}
return 0;
}