Dirichlet's Theorem on Arithmetic Progressions 筛取素数

If a and d are relatively prime positive integers, the arithmetic sequence beginning with a and increasing by d, i.e., a, a + d, a + 2d, a + 3d, a + 4d, ..., contains infinitely many prime numbers. This fact is known as Dirichlet's Theorem on Arithmetic Progressions, which had been conjectured by Johann Carl Friedrich Gauss (1777 - 1855) and was proved by Johann Peter Gustav Lejeune Dirichlet (1805 - 1859) in 1837.

For example, the arithmetic sequence beginning with 2 and increasing by 3, i.e.,

2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, ... ,

contains infinitely many prime numbers

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, ... .

Your mission, should you decide to accept it, is to write a program to find the nth prime number in this arithmetic sequence for given positive integers a, d, and n.

Input

The input is a sequence of datasets. A dataset is a line containing three positive integers a, d, and n separated by a space. a and d are relatively prime. You may assume a <= 9307, d <= 346, and n <= 210.

The end of the input is indicated by a line containing three zeros separated by a space. It is not a dataset.

Output

The output should be composed of as many lines as the number of the input datasets. Each line should contain a single integer and should never contain extra characters.

The output integer corresponding to a dataset a, d, n should be the nth prime number among those contained in the arithmetic sequence beginning with a and increasing by d.

FYI, it is known that the result is always less than 106 (one million) under this input condition.

Sample Input

367 186 151
179 10 203
271 37 39
103 230 1
27 104 185
253 50 85
1 1 1
9075 337 210
307 24 79
331 221 177
259 170 40
269 58 102
0 0 0

Sample Output

92809
6709
12037
103
93523
14503
2
899429
5107
412717
22699
25673


这道题最简单的做法就是从a开始判断是否为素数,然后是a+d,a+2d,,,直到找到第n个素数,输出,我试了一下,176K  235MS,不算很快,但比较省空间

还有就是用筛法求素数,从2开始,不断向后筛掉当前素数的倍数,借用一个bool数组实现,1152K  63MS,算是用空间换取时间吧

#include <iostream>  
#include <algorithm>  
#include <cstdio>  
#include <cstring>

using namespace std;  
const int N = 1e6;

bool b[N];

int main()  
{         
    int a, d, n, i, j;
    memset(b, 1, sizeof(b));
    b[0] = b[1] = 0;
    for(i = 2; i < N; i++)
    {
        if(b[i])
        {
            for(j = 2; j < N/i; j++)
                b[i*j] = 0;
        }
    }
    while(~scanf("%d%d%d", &a, &d, &n))
    {
        if(a == 0) break;
        int cnt = 0;
        for(i = a; i < N; i += d)
        {
            if(b[i])
            {
                cnt++;
                if(cnt == n)
                {
                    printf("%d\n", i);
                    break;
                }
            }
        }
    }
    return 0;  
}  


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值