LDA PCA

本文介绍了线性判别式LDA和主成分分析PCA在特征降维中的作用。LDA旨在最大化类间距离和最小化类内方差,PCA则通过寻找数据最大方差的方向进行降维。文中还通过实例解释了PCA的中心化和求协方差矩阵的过程。
摘要由CSDN通过智能技术生成
线性判别式

  LDA(线性判别式)思想:给定训练集样例,设法将样例投影到一条直线上,使得同类样例的投影点都尽可能的接近,异类样例的投影点都尽可能的远离。也就是—”投影后类内方差最小,类间方差最大”。
这里写图片描述
   欲使同类样例的投影点尽可能的近,可以让同类的样例投影点的协方差尽可能的小。
   欲使异类样例的投影点尽可能的远,可以让异类的样例投影的中心距离尽可能的大。
  由于是两类数据,因此我们只需要将数据投影到一条直线上即可。假设我们的投影直线是向量 w ,则对任意一个样本本 xi ,它在直线 w 的投影为 wTxi ,对于我们的两个类别的中心点 μ0,μ1 ,在在直线 w 的投影为 wTμ0 wTμ1 。由于LDA需要让不同类别的数据的类别中心之间的距离尽可能的大,也就是我们要最大化 ||wTμ0wTμ1||22 ,同时我们希望同一种类别数据的投影点尽可能的接近,也就是要同类样本投影点的协方差 wTΣ0w wTΣ1w 尽可能的小,即最小化

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LDA(Linear Discriminant Analysis)和PCA(Principal Component Analysis)是常用的降维方法,下面将对它们进行对比。 LDAPCA都是基于矩阵分解的方法,可以用于降低数据集的维度,但它们的目标和应用场景有所不同。 首先,LDA是一种有监督的降维方法,适用于分类问题。它通过最大化类间距离和最小化类内距离,将原始数据投影到一个低维空间,使得同一类别的样本尽可能靠近,不同类别的样本尽可能远离。LDA可以在降低维度的同时保留更多有助于分类的信息,因此通常用于模式识别和机器学习中。 而PCA则是一种无监督的降维方法,更加注重保留原数据中的信息。它通过找到最大方差的方向,将数据投影到新的低维空间。PCA可以消除数据之间的冗余和噪声,保留较多的总体信息,但无法考虑到类别之间的区分度。 另外,LDAPCA在计算过程和输入要求上也有所不同。LDA需要先指定类标签,并基于这些标签计算类内和类间的协方差矩阵,而PCA则直接基于原始数据计算协方差矩阵。此外,PCA对数据的分布没有假设,而LDA假设数据符合高斯分布。 总体来说,LDAPCA都可以用于降维,但应根据具体问题和需求选择合适的方法。如果任务是分类问题,可以使用LDA以获得更好的分类效果;如果仅仅是为了降低维度和去除冗余,PCA可能是更适合的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值