题目描述
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
思路:这题和跳台阶有点类似
假设要覆盖的大矩形为:
如上所示,第一种情况就是最后一列是竖着覆盖的,那么f(n) = f(n-1)
第二种情况就是最后2*2的fang方形区域是横着fuga覆盖的,那么f(n) = f(n-2)
那么总的来讲f(n) = f(n-1) + f(n-2)
可以用递归和非递归两种方式,递归空间复杂度和时间(复杂度相应也会变高)较高:
代码:
class Solution {
public:
int rectCover(int number) {
if(number == 0)
{
return 0;
}
if(number == 1)
{
return 1;
}
if(number == 2)
{
return 2;
}
int f1 = 1,f2 = 2,f3;
for(int i=3;i<=number;i++)
{
f3 = f1 + f2;
f1 = f2;
f2 = f3;
}
return f3;
//return rectCover(number-1) + rectCover(number-2);//递归内存可能不通过
}
};