剑指offer第十题:矩形覆盖

题目描述

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

思路:这题和跳台阶有点类似

假设要覆盖的大矩形为:

       
       

 

如上所示,第一种情况就是最后一列是竖着覆盖的,那么f(n) = f(n-1)

第二种情况就是最后2*2的fang方形区域是横着fuga覆盖的,那么f(n) = f(n-2)

那么总的来讲f(n) = f(n-1) + f(n-2)

可以用递归和非递归两种方式,递归空间复杂度和时间(复杂度相应也会变高)较高:

代码:

class Solution {
public:
    int rectCover(int number) {
        if(number == 0)
        {
            return 0;
        }
        if(number == 1)
        {
            return 1;
        }
        if(number == 2)
        {
            return 2;
        }
        int f1 = 1,f2 = 2,f3;
        for(int i=3;i<=number;i++)
        {
            f3 = f1 + f2;
            f1 = f2;
            f2 = f3;
        }
        return f3;
        //return rectCover(number-1) + rectCover(number-2);//递归内存可能不通过
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HaoRenkk123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值