剑指offer-矩形覆盖

该博客介绍了如何使用2*1的小矩形无重叠地覆盖2*n的大矩形的问题,通过递归关系找到了解题方法,类似于斐波那契数列。内容包括题目描述、解决思路、经验教训和代码实现。
摘要由CSDN通过智能技术生成

题目描述

  • 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
  • 地址:牛客链接

解决方法

  • 一个归纳总结题:如何找递归关系
  • 用 f(n) 表示 用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法,那么当 n = 1时,只有一种方法,那便是竖着放,所以 f(1) = 1; 当 n = 2时,有2种方法,那便是两个都竖着放,或者两个都横着放,所以 f(2) = 2
  • 那么如果第一个竖着放,剩下为2*(n - 1)的大矩形,放法为 f(n - 1);如果第一个横着放,那么必须还有一个横着放,剩下为2*(n - 2)的大矩形,放法为 f(n - 2);
  • 综上 f(n)=f(n1)+f(n2),n>=3;f(1)=1,f(2)=2 f ( n ) = f ( n − 1 ) + f ( n − 2 ) , n >= 3 ; f ( 1 ) = 1 , f ( 2 ) = 2 这就类似于斐波那契数列和 跳台阶 问题。具体详解见以上链接

经验教训

  • 如何归纳总结,将大问题分割成小问题,找到递归关系

代码实现

public class Solution {
    public int RectCover(int target) {
        if (target <= 2) {
            return target;
        }
        int preValue = 1;
        int curValue = 2;
        for (int i = 3; i <= target; i++) {
            curValue = preValue + curValue;
            preValue = curValue - preValue;
        }
        return curValue;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值