每日一题

题目来源:新浪微博 善科题库

题目内容:

#每日一题# 某数学游戏规则如下: 裁判在黑板上先写出整数 2,3,...,2012, 然后由裁判随意擦去一个数, 接下由甲乙两选手按乙→甲→乙……的顺序轮流擦去一个数. 若最后剩下的两个数互质, 则判甲胜; 否则判乙胜. 求甲获胜的概率. (甲乙皆采取最佳取胜策略)


结论: 甲胜利概率: 1006/2011

             乙胜利概率: 1005/2011


推理:

1) 2、3 -- 2012 共有2011个数,其中1005个奇数,1006个偶数

2) 当剩下连个数时,甲、乙各拿了1004个数


假设:

1)  裁判擦去奇数,那么剩余1004个奇数,1006个偶数。此时乙只需每次擦去奇数即可,剩余偶数必然不互质

2)裁判擦去偶数,那么剩余1005个奇数,1005个偶数。

      甲策略:

      A) 乙擦去某数后,甲只需擦去距其最近的数即可

      B) 乙擦奇数,甲擦偶数;反之亦然


      剩下4个数时,必然两奇两偶,有四种情况

      A) 4个数连续。a,a+1,a+2,a+3

      B) 4个数两两连续。a,a+1,b,b+1

      C) 3个数连续,另外一个数独立,独立的数为偶数。 2a-1、2a,2a+1 ,2b

      C) 3个数连续,另外一个数独立,独立的数为奇数。 2a、2a+1,2a+2,2b+1   


      由于 (1) 相邻的两个整数必然互质 (2) 相邻的连个奇数必然互质 (3) 2---2012中任一奇数不可能同时和两个相邻的偶数存在公因数

      因此甲必胜。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值