#每日一题# 某数学游戏规则如下: 裁判在黑板上先写出整数 2,3,...,2012, 然后由裁判随意擦去一个数, 接下由甲乙两选手按乙→甲→乙……的顺序轮流擦去一个数. 若最后剩下的两个数互质, 则判甲胜; 否则判乙胜. 求甲获胜的概率. (甲乙皆采取最佳取胜策略)
结论: 甲胜利概率: 1006/2011
乙胜利概率: 1005/2011
1) 2、3 -- 2012 共有2011个数,其中1005个奇数,1006个偶数
2) 当剩下连个数时,甲、乙各拿了1004个数
假设:
1) 裁判擦去奇数,那么剩余1004个奇数,1006个偶数。此时乙只需每次擦去奇数即可,剩余偶数必然不互质
2)裁判擦去偶数,那么剩余1005个奇数,1005个偶数。
甲策略:
A) 乙擦去某数后,甲只需擦去距其最近的数即可
B) 乙擦奇数,甲擦偶数;反之亦然
剩下4个数时,必然两奇两偶,有四种情况
A) 4个数连续。a,a+1,a+2,a+3
B) 4个数两两连续。a,a+1,b,b+1
C) 3个数连续,另外一个数独立,独立的数为偶数。 2a-1、2a,2a+1 ,2b
C) 3个数连续,另外一个数独立,独立的数为奇数。 2a、2a+1,2a+2,2b+1
由于 (1) 相邻的两个整数必然互质 (2) 相邻的连个奇数必然互质 (3) 2---2012中任一奇数不可能同时和两个相邻的偶数存在公因数
因此甲必胜。