494. 目标和

1.题目描述

给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
示例:
在这里插入图片描述
提示:
1.数组非空,且长度不会超过 20 。
2.初始的数组的和不会超过 1000 。
3.保证返回的最终结果能被 32 位整数存下。

2.动态规划

把所有符号为正的数总和设为一个背包的容量,容量为x;把所有符号为负的数总和设为一个背包的容量,容量为y。在给定的数组中,有多少种选择方法让背包装满。令sum为数组的总和,则x+y = sum。而两个背包的差为S,则x-y=S。从而求得x=(S+sum)/2。
基于上述分析,题目转换为背包问题:给定一个数组和一个容量为x的背包,求有多少种方式让背包装满。

3.代码

class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int S) {
        long long sum = 0;
        for(auto &n : nums){
            sum += n;
        }
        //背包容量为整数
        if((long long)(sum + S) % 2 == 1){
            return 0;
        }
        //目标和不能大于总和
        if(S > sum){
            return 0;
        }
        int len = (sum + S) / 2;
        vector<long long> dp(len + 1);
        dp[0] = 1;
        for(auto num : nums){
            for(int i = len;i >= num;--i){
                dp[i] += dp[i - num];
            }
        }
        return dp[len];
    }
};

4.复杂度分析

时间复杂度: O ( N ∗ sum ) O(N*\text{sum}) O(Nsum),其中 N 是数组 nums 的长度。
空间复杂度: O ( sum ) O(\text{sum}) O(sum)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值