1.题目描述
给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
示例:
提示:
1.数组非空,且长度不会超过 20 。
2.初始的数组的和不会超过 1000 。
3.保证返回的最终结果能被 32 位整数存下。
2.动态规划
把所有符号为正的数总和设为一个背包的容量,容量为x;把所有符号为负的数总和设为一个背包的容量,容量为y。在给定的数组中,有多少种选择方法让背包装满。令sum为数组的总和,则x+y = sum。而两个背包的差为S,则x-y=S。从而求得x=(S+sum)/2。
基于上述分析,题目转换为背包问题:给定一个数组和一个容量为x的背包,求有多少种方式让背包装满。
3.代码
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int S) {
long long sum = 0;
for(auto &n : nums){
sum += n;
}
//背包容量为整数
if((long long)(sum + S) % 2 == 1){
return 0;
}
//目标和不能大于总和
if(S > sum){
return 0;
}
int len = (sum + S) / 2;
vector<long long> dp(len + 1);
dp[0] = 1;
for(auto num : nums){
for(int i = len;i >= num;--i){
dp[i] += dp[i - num];
}
}
return dp[len];
}
};
4.复杂度分析
时间复杂度:
O
(
N
∗
sum
)
O(N*\text{sum})
O(N∗sum),其中 N 是数组 nums 的长度。
空间复杂度:
O
(
sum
)
O(\text{sum})
O(sum)