你打算利用空闲时间来做兼职工作赚些零花钱。
这里有 n 份兼职工作,每份工作预计从 startTime[i] 开始到 endTime[i] 结束,报酬为 profit[i]。
给你一份兼职工作表,包含开始时间 startTime,结束时间 endTime 和预计报酬 profit 三个数组,请你计算并返回可以获得的最大报酬。
注意,时间上出现重叠的 2 份工作不能同时进行。
如果你选择的工作在时间 X 结束,那么你可以立刻进行在时间 X 开始的下一份工作。
示例 1:
示例 2:
示例 3:
提示:
1 <= startTime.length == endTime.length == profit.length <= 5 * 10^4
1 <= startTime[i] < endTime[i] <= 10^9
1 <= profit[i] <= 10^4
2.思路
1.先按照结束时间排序
2.dp 是map,key 是结束时间,value 是 到结束时间 key 时的最大的收益
3.每次二分查找 map 找到上一个不冲突的结束时间点,进行状态转移
4.状态转移方程为:
dp[endTime[idx]] = max(res, dp_prev+profit[idx]);
res = max(res, dp[endTime[idx]]);
其中dp_prev为上一个结束的收益,dp[endTime[idx]]为选择当前工作和不选择当前工作的最大值。
3.代码
class Solution {
public:
int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {
int n = startTime.size();
vector<int> id(n);
iota(id.begin(), id.end(), 0); //生成递增序列0,1,2,3..
sort(id.begin(), id.end(), [&](int& a, int& b){
return endTime[a] < endTime[b];
}); //根据结束时间排序
map<int, int> dp;//key是结束时间,value是 到结束时间 key 时的最大的收益
dp[0] = 0;
dp[endTime[id[0]]] = profit[id[0]];
int res = profit[id[0]];
for(int i = 1;i < n; ++i){
int idx = id[i]; //序号
auto iter = dp.upper_bound(startTime[idx]);
int dp_prev = (--iter)->second;
dp[endTime[idx]] = max(res, dp_prev + profit[idx]);
res = max(res, dp[endTime[idx]]);
}
return res;
}
};
4.复杂度分析
时间复杂度:O(nlogn)
空间复杂度:O(n)