1235. 规划兼职工作

你打算利用空闲时间来做兼职工作赚些零花钱。
这里有 n 份兼职工作,每份工作预计从 startTime[i] 开始到 endTime[i] 结束,报酬为 profit[i]。
给你一份兼职工作表,包含开始时间 startTime,结束时间 endTime 和预计报酬 profit 三个数组,请你计算并返回可以获得的最大报酬。
注意,时间上出现重叠的 2 份工作不能同时进行。
如果你选择的工作在时间 X 结束,那么你可以立刻进行在时间 X 开始的下一份工作。
示例 1:
在这里插入图片描述
示例 2:
在这里插入图片描述
示例 3:
在这里插入图片描述
提示:
1 <= startTime.length == endTime.length == profit.length <= 5 * 10^4
1 <= startTime[i] < endTime[i] <= 10^9
1 <= profit[i] <= 10^4

2.思路

1.先按照结束时间排序
2.dp 是map,key 是结束时间,value 是 到结束时间 key 时的最大的收益
3.每次二分查找 map 找到上一个不冲突的结束时间点,进行状态转移
4.状态转移方程为:
dp[endTime[idx]] = max(res, dp_prev+profit[idx]);
res = max(res, dp[endTime[idx]]);
其中dp_prev为上一个结束的收益,dp[endTime[idx]]为选择当前工作和不选择当前工作的最大值。

3.代码

class Solution {
public:
    int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {
        int n = startTime.size();
        vector<int> id(n);
        iota(id.begin(), id.end(), 0); //生成递增序列0,1,2,3..
        sort(id.begin(), id.end(), [&](int& a, int& b){
            return endTime[a] < endTime[b];
        }); //根据结束时间排序

        map<int, int> dp;//key是结束时间,value是 到结束时间 key 时的最大的收益
        dp[0] = 0;
        dp[endTime[id[0]]] = profit[id[0]];
        int res = profit[id[0]];
        for(int i = 1;i < n; ++i){
            int idx = id[i]; //序号
            auto iter = dp.upper_bound(startTime[idx]);
            int dp_prev = (--iter)->second;
            dp[endTime[idx]] = max(res, dp_prev + profit[idx]);
            res = max(res, dp[endTime[idx]]);
        }
        return res;
    }
};

4.复杂度分析

时间复杂度:O(nlogn)
空间复杂度:O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值