面向LLM的个性化无线联邦学习

题目:Personalized Wireless Federated Learning for Large Language Models

作者:江沸菠, 董莉, 涂思伟, 彭于波, 王可之, 杨鲲, 潘存华, Dusit Niyato

来源:arxiv

论文地址https://arxiv.org/abs/2404.13238(查看全文请点击原文链接)

大语言模型(LLM)已经彻底改变了自然语言处理任务。然而,它们在无线网络中的部署仍面临隐私和安全的挑战。联邦学习(FL)已经成为解决这些挑战的一种有前途的方法。然而,它依然存在着一些问题,包括针对海量异构数据的低效处理、资源密集型的训练以及高通信开销。为了解决这些问题,本文首先比较了无线网络中LLMs的不同学习阶段及其特点。接下来,介绍了两种具有低通信开销的个性化无线联邦微调方法,即(1)个性化联邦指令微调(PFIT),它采用强化学习来微调本地LLMs,使用不同的奖励模型实现个性化;(2)个性化联邦任务微调(PFTT),它利用全局适配器(Adapter)和本地低秩自适应(LoRA)来协同微调本地LLMs,其中本地LoRAs可以应用于实现模型个性化而无需聚合。最后,进行了仿真实验,证明了提出的两种方法的有效性,并全面讨论了未解决的问题。

目录

1.引言

2. 在无线网络中协调LLM和FL

2.1 LLM的预训练阶段

2.2 LLM的微调阶段

2.3 LLM的检索增强生成阶段

3. 无线联邦微调LLM的潜在解决方案

3.1 联邦指令微调

3.2 联邦任务微调

4. 个性化联邦微调

4.1 当前研究进展

4.2 PFL的优势

4.3 PFIT

4.4 PFTT

5. 仿真结果

5.1 问题阐述

5.2 仿真设置

5.3 评估结果

6. 未解决问题

7. 结论


1.引言

随着6G通信的发展,人工智能(AI)在无线网络中的应用变得越来越重要。6G的一个关键特性是将AI与无线网络深度集成,从而支持更智能的服务和应用。大语言模型(LLM)展示出令人印象深刻的语言理解和生成能力,彻底改变了自然语言处理(NLP)任务,推动了人工智能研究的边界。LLM还可以更准确地理解用户的语义和意图,从而为6G用户提供个性化服务。然而,随着LLM规模的不断扩大,达到数百亿甚至数万亿个参数,传统的公开可用数据集面临着难以满足未来LLM训练需求的挑战。在6G网络中,可能会有大量的移动设备,潜在地积累大量用户数据。然而,关于数据安全和信息隐私的担忧可能仍然阻止用户共享其个人数据用于在无线网络中训练LLM。

为了利用分布式和私有化数据的大量用户数据来训练LLM,联邦学习(FL)是一种潜在的分布式学习方法。这种方法使未来的LLM能够从更广泛的数据源中学习,同时保持数据安全和隐私。然而,在无线FL中训练LLM存在着许多挑战:

1) 海量和异构的数据:LLM需要来自多样化数据源的大量数据来有效地训练模型。在无线FL中,数据的分布结构是一个关键挑战,因为每个移动设备上的数据可能高度不平衡,取决于它们的背景、偏好或行为。这可能导致训练LLM的收敛速度较慢,性能较差。此外,移动设备之间数据的多样性可能在无线网络中引入复杂的数据分布。

2)资源密集型训练:训练LLM是一个资源密集型的任务,需要高计算能力和大内存。在无线FL中,计算是分布式的,个别设备可能需要具有足够的资源才能够参与训练过程。然而,并非所有参与设备(如智能手机或平板电脑)都具有必要的计算和存储资源,这可能导致训练速度较慢,甚至无法成功训练LLM。

3)高通信开销:无线FL需要中央服务器和设备之间频繁通信来更新LLM,这可能导致高带宽需求和高延迟成本。对于具有数十亿甚至数万亿参数的LLM,这可能导致需要传输大量数据,从而产生高通信开销。此外,通信成本随着通信轮次的增加、参与设备的数量和模型大小而增加。因此,在不牺牲模型性能的情况下减少通信开销是一个重大挑战。

此外,以用户为中心的个性化LLM的需求显著增加。这些LLM具有学习个人偏好并生成定制结果的能力。个性化联邦学习(PFL)是FL的延伸,它认识到不同客户之间可能存在数据和偏好的异质性,旨在为每个客户学习个性化模型。参数高效微调(PEFT)通过调整预训练LLM的最少数量参数,使其能够有效地适应用户特定的数据和任务,从而减少计算资源和通信开销。因此,结合PFL和PEFT可以克服训练LLM时面临的上述挑战。

与传统的生成模型(如生成对抗网络扩散模型)不同,在训练LLM时,需要考虑与人类价值观的一致性以及在学习过程中与外部知识的互动。因此,在论文中,我们首先介绍并比较了LLM在无线网络中的不同学习阶段及其特点。然后,我们总结了针对各种微调方法的PFL的潜在解决方案。最后,我们强调了PFL在微调LLM方面的优势,并提出了两种个性化无线联邦微调的低通信开销方法,如下所述:

1) 个性化联邦指令微调(PFIT):我们关注来自人类反馈的强化学习(RLHF),并设计了两个奖励模型来表示人类反馈的有效性和安全性。通过在线性组合不同客户端上的两个奖励模型,可以获得个性化的本地LLM。同时还采用了稀疏自注意力机制来减少通信开销,并加速联邦指令微调的训练速度。

2) 个性化联邦任务微调(PFTT):我们将两种PEFT方法结合起来,即适配器(Adapter)和低秩自适应(LoRA),以减少通信开销,并加速联邦任务微调。客户端的适配器参数被发送到服务器进行全局聚合,而LoRA参数保留在客户端以保持本地LLM的个性化。

本文的剩余组织结构如下:第二节描述了LLM和FL在无线网络中的结合。第三节提供了LLM的联邦微调的一些潜在解决方案。第四节详细介绍了提出的个性化无线联邦微调方案。第五节展示了仿真结果。第六节介绍了未解决问题,第七节对本文进行了总结。

2. 在无线网络中协调LLM和FL

与传统的深度学习不同,LLM具有三个阶段的学习过程:预训练、微调和检索增强生成(RAG)。如图1所示,预训练阶段为一般性的语言理解和分析提供了基础,而微调阶段则将此理解调整到特定任务或目标,最后RAG阶段通过从外部数据源检索信息来增强这种理解并提高答案的准确性。LLM的所有学习阶段也在表I中总结和比较。

2.1 LLM的预训练阶段

在预训练阶段,LLM部署在服务器上,并使用大量的未标记数据进行自监督学习。许多客户设备通过无线网络将不包含敏感信息的未标记数据传输到服务器,用于LLM的学习。预训练的目标是通过预测句子中缺失或屏蔽的单词来向LLM教授自然语言的模式、语法、语义和世界知识。例如,在BERT模型中,通过一种称为屏蔽语言建模(MLM)的技术来实现,其中句子中的一定比例的单词会被随机替换为特殊的屏蔽标记,模型针对屏蔽标记预测原始单词。在预训练阶段,LLM学会了捕捉上下文关系,并建立了对语言的一般性理解。模型中大量的参数使其能够编码来自训练语料库的大量信息,从而产生丰富的语言表示。

然而,由于以下原因,LLM的预训练阶段可能不太适合FL:

1) 高资源需求:LLM的预训练涉及调整所有参数,这需要大量的计算资源。在FL中,模型跨多个设备或服务器进行训练,每个设备根据其计算和存储资源获取模型的更新。此外,这种分布式计算增加了通信开销,因为需要对每个设备的更新进行聚合以获取全局模型。相反,集中式训练可以利用强大的服务器和优化的基础设施更有效地训练LLM。

2) 隐私问题:LLM的预训练通常涉及使用大量公开可用的文本语料库,例如书籍、网站和其他在线资源。由于这些数据已经公开可用且不包含敏感个人信息,因此不需要使用FL。FL更适用于数据敏感且分散的情况,例如在医疗保健或个人移动设备中,隐私法规或担忧阻止数据直接共享的情况。

图1 LLM在无线网络中的三阶段学习示意图。

2.2 LLM的微调阶段

一旦LLM在服务器端完成预训练,它将在一个更小、更具体的数据集上进行进一步的微调。这个数据集通常由本地私有数据组成。客户端从服务器下载LLM的预训练参数,并在一个极小的参数子集上进行微调,以增强LLM的性能。为了确保本地数据的安全性和隐私性,微调过程在客户端本地进行,更新后的参数子集通过无线网络传输回服务器。这个本地数据集通常是有标签的,意味着它带有LLM应该学习预测的正确答案。微调需要较少的计算资源和较少的数据量,相比之下,预训练则需要更多。

LLM的微调可以分为以下类型:

1) 指令微调:指导微调是一种针对LLM在任务说明和执行结果的组合上进行微调的策略,以便LLM可以基于说明生成正确的结果。指令微调使用自然语言说明作为输入来查询LLM并指导其输出。说明由序列组成,将包含了对任务的解释和示例,这可以为LLM生成与用户意图和数据源一致的文本提供明确和精确的指导。指令学习的目标是提高LLM在未见任务上的理解和泛化能力,以及其有效性和安全性。

2) 任务微调:一旦LLM在未标记数据上进行了预训练,它将进一步在具体的下游任务上进行微调,使用带有标签的数据。任务微调涉及在带有标签或目标输出的较小任务特定数据集上训练预训练模型。在任务微调过程中,根据标记的任务数据更新预训练模型,使其适应特定任务。其目标是微调模型的权重,以更好地与目标任务的结果对齐,并提高其性能。任务微调过程有助于模型将其预先学习的知识泛化到具体任务中,使其更具任务特殊性和准确性。

联邦学习在微调阶段具有重要的价值,特别是在涉及隐私问题或分布式数据源的情况下。其原因列举如下:

1) 低资源要求:微调相对高效,因为与预训练相比,微调只需要调整LLM的一小部分参数,所需的数据和计算资源较少,这使得即使在资源受限的设备上也可以训练LLM。

2) 数据隐私保护:微调通常涉及特定的用户数据,可能是敏感的。例如,LLM可能会在用户与数字助手的交互中进行微调,其中可能包含个人信息。联邦学习使得这种微调可以在用户自己的设备上进行,确保个人信息保持安全和保密。

2.3 LLM的检索增强生成阶段

RAG是一种将LLM与信息检索技术结合起来增强LLM性能的方法。由于LLM的巨大训练成本,所学习的知识存在时间滞后。例如,在本文写作时,GPT-3.5的训练数据持续到2022年1月,这意味着它缺乏对2022年1月之后发生的任何事件的知识。在生成过程中,不仅依赖于预训练或微调模型的知识,还采用检索机制从外部来源(如互联网或本地知识库)检索最新相关信息。这些知识库通常部署在边缘,客户端通过查询知识库来检索最新的本地信息。然后,检索到的本地信息与客户端的请求一起通过无线网络发送到服务器端的LLM。此外,LLM可以利用互联网检索最新的相关公共信息。然后,将检索到的信息合并到LLM的生成输出中,确保生成的内容在语境上相关且事实准确。

然而,由于以下原因,RAG可能也不适用于联邦学习:

1) 额外的数据曝光:共享敏感的检索查询或跨多个客户端访问外部数据资源可能会危及分布式数据的隐私和安全。

2) 无权重更新:RAG通过将检索到的数据合并到提示中以进行上下文学习来增强LLM的性能。它不需要更新LLM的参数,因此在联邦学习中不需要进行本地梯度下降的计算。

LLM不仅在学习过程中需要与人类价值观保持一致,还需要与外部知识进行交互,这代表了一种更复杂的学习范式。由于预训练阶段涉及大量不敏感数据和大量模型参数,因此更适合于集中式学习。相反,在RAG阶段,仅需要本地数据嵌入和查询,因此更适合于本地执行。因此,我们主要专注于为微调阶段设计PFLs。

3. 无线联邦微调LLM的潜在解决方案

在这一部分,我们介绍了LLM的联邦微调的关键技术和潜在解决方案。

3.1 联邦指令微调

联邦指令微调涉及对LLM进行指令微调的联邦学习[4],这需要每个客户端拥有足够的计算资源来微调比任务微调方法更多的参数数量。此外,它需要在网络上传输更多的模型参数,这可能会消耗带宽并耗时。此外,对于本地指令的LLM输出质量进行明确的损失定义具有挑战性。以下技术有潜力解决这些挑战:

1) 稀疏注意力:在传统的注意力机制中,每个标记(单词)都会关注每个其他标记,导致与输入序列长度相关的二次复杂度。然而,在输入序列较长的情况下,这种方法变得计算昂贵且内存密集。稀疏注意力通过引入稀疏模式来解决这个问题,允许标记仅关注其他标记的子集,而不是关注所有标记[6]。这降低了计算和内存需求以及通信开销,同时保留了LLM在联邦学习中捕获相关依赖关系的能力。稀疏模式可以在指令微调期间学习,使LLM能够根据无线环境动态确定注意力参数的子集。

2) RLHF:RLHF是一种基于强化学习(RL)的微调技术,通过整合人类生成的反馈[7]来提高LLM的性能,以解决难以定量评估个性化模型的问题。这种方法涉及三个步骤过程。首先,使用监督指令学习对LLM进行微调,利用人类生成的指令训练LLM。接下来,对一个指令和模型的多个输出进行抽样。然后,人类评估者对这些输出进行排名,从最好到最差,并且排名数据用于训练一个新的奖励模型。最后,奖励模型计算LLM输出的奖励,并且估计的奖励被用于RL更新策略。在联邦学习中,我们可以调整LLM中用于计算生成概率分布的参数,这些参数控制在生成过程中选择不同单词或标记的概率,可以影响LLM的输出,以更好地符合人类反馈传达的期望,生成符合人类价值观的结果。

3.2 联邦任务微调

联邦任务微调采用联邦学习来对LLM的下游任务进行微调[8],相对而言,比指令微调更为高效,因为它需要客户端的数据和计算资源较少。它允许针对特定任务进行调整,但也存在过拟合或遗忘本地LLM原始知识的风险。PEFT是一组旨在通过最小改变原始参数来使LLM适应特定下游任务的技术。以下PEFT方法可以帮助减轻LLM中的过拟合和灾难性遗忘。

1) 适配器:适配器微调引入了小的、任务特定的适配器模块到预训练的LLM中[9]。这些适配器模块被插入到预训练LLM的层之间。它们通常由一个瓶颈结构组成:一个下投影、一个非线性层和一个上投影。在微调过程中,只有这些适配器模块的参数被更新,而预训练LLM的参数保持不变。在联邦学习中,这种方法显著减少了每个客户端需要更新的参数数量,同时仍然允许LLM以较少的资源适应特定任务。此外,在适应无线信道质量时,我们可以自适应地定义适配器的维度,从而动态调整在无线信道中传输的通信开销。

2) LoRA:LoRA通过将低秩矩阵分解应用于模型参数[8],将预训练的LLM适应到新任务上。LoRA将原始权重矩阵分解为两个较小矩阵的乘积,在微调过程中只更新较小的矩阵。在联邦学习中,LoRA可以减少需要更新的参数数量,从而降低客户端的通信和计算成本。通过保留历史上的低秩矩阵,LoRA可以防止本地模型的灾难性遗忘,同时保持其生成和泛化能力。

联邦指令微调通过从人类指令中学习加深对人类问题的理解,而联邦任务微调通过从不同任务数据中学习来增强下游任务的性能。这两种方法从不同的角度增强了LLM的分布式学习性能。

4. 个性化联邦微调

4.1 当前研究进展

在无线联邦学习和LLM方面已经有一些联合研究工作。[3]中的作者将分割学习和联邦学习结合起来对BERT模型进行预训练。参考文献[4]提出了一种名为Shepherd的联邦指令学习,利用LoRA通过指令数据对LLM进行微调。类似地, [8]中的作者提出了一种基于LoRA的低参数联邦学习,用于LLM的任务微调。参考文献[10]通过一个名为Fate-LLM的综合FL开源框架,解决了LLM的共同微调和离线微调问题。然而,所有这些研究都旨在以分布式方式训练统一的LLM,忽视了设备变化、用户偏好和特性。因此,它们无法实现以用户中心的LLM。

4.2 PFL的优势

个性化联邦微调(PFL)允许设计个性化的LLM,能够在无线网络上适应各个客户端的数据和用户偏好,这可以提高用户的满意度和参与水平。应用PFL到LLM的优势包括:

1) 个性化用户数据:PFL允许从各种用户数据进行个性化学习,这在对非独立同分布数据进行LLM微调时可能会有益处。PFL可以为每个客户端学习一个个性化的LLM,根据其自身的数据分布进行定制,使LLM能够从更广泛的个性化背景、特征和模式中学习。这可以提高LLM对用户隐私数据的理解和生成能力。

2) 定制化的本地模型:通过允许每个客户端拥有自己的个性化LLM,PFL使得本地调整过程能够根据每个设备的偏好和约束进行定制。这可以更好地适应个人的特殊要求和计算、存储和通信资源的约束,提高所有客户端LLM的模型性能。

3) 特定的通信过程:通过PFL,LLM的全局聚合可以根据每个客户端的偏好和需求进行定制,避免对他们可能不必要的更新。这降低了通信成本,使微调过程更加高效。

因此,PFL在平衡LLM学习共享知识和个性化知识之间提供了灵活的方法。

4.3 PFIT

我们提出了一种基于强化学习的个性化联邦指令微调(PFIT)方法,在该方法中,每个客户端对LLM的有效性和安全性有个性化的要求。有效性强调生成内容的质量和准确性,如语法正确性、逻辑连贯性和回答的相关性。而安全性则强调生成内容的合法性和道德性,如不包含敏感信息或有害信息。例如,在图2中,具有较高有效性的LLM会回答关于员工信息的用户问题,包括敏感信息。然而,具有较高安全水平的LLM会避免回答敏感的员工信息,优先考虑用户隐私。为了实现PFIT,我们引入了三个关键创新:

1) 双重奖励模型:我们定义了两个奖励模型来评估本地指令响应的有效性和安全性。通过线性加权这两个奖励模型,来获取不同客户端输出的质量奖励,从而实现不同客户端需求下的个性化指令微调。

2) 个性化奖励函数:我们设计了一个个性化奖励函数,包括两个奖励模型结合的回答质量奖励和对全局知识的负正则化奖励。正则化奖励基于本地模型参数和全局模型参数之间的欧氏距离,用来促进PFL系统中客户端之间的知识共享。

3) 稀疏注意力更新:为了鼓励轻量级设备参与PFL,我们只微调LLM的最后两层。此外,我们采用稀疏注意力机制进一步减少LLM在微调阶段的计算复杂性和通信开销。

PFIT的具体工作流程如下:

Step 1:在服务器上将预训练的LLM初始化为全局模型,并冻结LLM的前面部分。

Step 2:每个客户端使用全局LLM作为初始本地LLM,根据对有效性和安全性的需求设置个性化奖励函数,并选择自己的指令数据进行本地学习。

Step 3:基于当前的本地LLM,客户端计算与全局LLM相关的正则化奖励,评估响应的有效性和安全性,计算指令的回答质量奖励,然后根据个性化奖励函数使用PPO算法更新本地LLM的未冻结部分,包括回答质量奖励和正则化奖励。

Step 4:服务器从所有客户端聚合稀疏可调整层(LLM的未冻结部分),获得更新的全局LLM,并将全局LLM(未冻结部分)发送给所有客户端。

Step 5:重复Step 3-4直到满足PFL系统的收敛标准。

图2 基于RL的PFIT示意图。

4.4 PFTT

我们提出了一种基于PEFT的个性化联邦任务微调(PFTT)方法,其中一组客户端具有不同的任务目标,每个客户端拥有一组非IID任务数据。例如,在图3中,不同的客户端被分配了电影分类任务,但是标记数据的分布在不同客户端之间有所不同。一些客户端可能拥有更多的科幻和现实类电影标签,而另一些客户端可能拥有更多的喜剧和悲剧类电影标签。因此,LLM将根据其可用的本地标记数据的分布,优先提供个性化的电影分类。为了实现PFTT,我们引入了三个关键创新点:

1) 通用适配器:我们将适配器整合到全局预训练的LLM中,以在不同客户端之间共享任务知识。

2) 本地LoRA:我们在本地LLM中引入LoRA,以实现个性化的本地知识学习。LoRA的大小可以根据每个客户端的数据量或计算资源进行调整。

3) 部分聚合:在全局聚合期间,仅聚合适配器参数以进行全局知识共享,而不聚合LoRA参数以保持个性化。这种方法可以在异构设备上实现个性化的任务调优。

PFTT的具体工作流程如下:

Step 1:在服务器上将预训练的LLM初始化为全局LLM,并向LLM插入适配器。

Step 2:每个客户端使用全局LLM作为初始本地LLM,并根据本地LLM的数据量或计算资源设计本地LoRA参数。

Step 3:基于当前的全局LLM和本地LoRA参数,客户端使用本地任务数据对LLM进行微调,并更新适配器和LoRA参数。

Step 4:服务器通过无线网络从所有客户端聚合适配器参数,获得更新的全局适配器参数,并将其发送给客户端。

Step 5:重复Step 3-4直到满足PFL系统的收敛标准。

图3 基于PEFT的PFTT示意图。

通过PFL,这两种微调方法都可以为个性化LLM实现更好的性能。

5. 仿真结果

本节提供了两个实验,以展示提出的PFIT和PFTT的有效性。

5.1 问题阐述

我们考虑了一个用于LLM的PFL系统。假设系统由四个客户端和一个服务器组成,其中每个客户端拥有不同的本地数据和模型偏好。服务器拥有足够的资源。PFL系统旨在在无线网络中实现对所有客户端的本地LLM进行个性化微调,信道采用瑞利衰落,通信轮次设置为40,信噪比设置为5dB。

5.2 仿真设置

1) PFIT的设置:首先,我们使用Alpaca数据集[12]评估了提出的PFIT方案的有效性。其次,我们使用具有20%稀疏注意力的GPT-2 [13]作为本地LLM,并采用PPO作为本地RL算法。在微调过程中,我们从数据集中抽样指令,生成相应的GPT-2响应。然后,我们将“指令+响应”合并发送到两个奖励模型中,一个模型评估响应的有效性得分,另一个评估其安全性得分。然后,我们利用奖励分数(即有效性得分加上安全性得分)和每轮的通信开销(即要聚合的参数大小)作为评估指标。

2) PFTT的设置:首先,我们使用AG新闻语料库[14]作为PFTT的评估数据集。此外,我们采用狄利克雷分布来促进客户端之间的非IID数据分区。接下来,我们利用RoBERTa [15]作为本地LLM,它是在自监督方式下对大量英文数据进行预训练的改进型BERT模型。我们为每个客户端使用12个通用适配器来在不同客户端之间交换信息。随后,每个客户端根据其本地资源,整合10-12个本地LoRA,实现本地模型个性化。最后,由于本地LLM负责新闻分类,我们使用每轮的分类准确率和通信延迟(即通信开销除以传输速率)作为评估指标。

5.3 评估结果

图4展示了PFIT及其竞争对手的评估结果,其中SFL表示一种仅使用单一奖励模型(帮助度指标)并整合20%稀疏注意力的微调方法。另一方面,PFL表示个性化微调,但不使用稀疏注意力。Shepherd是一种采用LoRA进行指导微调的FL方法[4]。我们可以看到,与仅使用单一奖励模型的SFL和Shepherd相比,PFIT使本地模型获得了最高的奖励。此外,与不使用稀疏注意力的PFL相比,PFIT将通信开销减少了20%。Shepherd利用LoRA进行指导微调,导致了最低的通信开销。然而,这种方法也影响了LLM的性能,导致奖励比PFIT低。

图4 PFIT及其竞争对手的奖励和通信开销。

图5展示了PFTT及其基准测试的评估结果。在标准的联邦学习(FL)中,适配器和LoRA的所有参数都需要上传。FedBert是一种联邦分割学习方法,而FedLora是一种专门整合了LoRA的联邦微调方法。结果表明,PFTT实现了最高的准确率,突显了基于LoRA的个性化结构的有效性。类似地,由于PFTT只需要传输部分微调参数(通用适配器),与其他方法相比,它产生了最小的通信开销。

图5 PFTT及其竞争对手的准确率和通信延时。

6. 未解决问题

1) 无线聚合和发散:在PFL中,多个参与者合作训练共享的LLM。然而,由于无线网络中信号质量波动的可能性,移动设备可能会遇到通信中断和数据丢失的情况。在聚合过程中,这些不稳定性可能导致模型发散。解决无线网络中模型聚合和发散的挑战需要采用异步模型聚合策略和公平的客户端选择机制,以确保模型有效地融合所有参与者的贡献,同时平衡差异,以确保模型更新的可靠性。

2) 个性化和过拟合:个性化是PFL的核心目标之一,旨在定制共享的LLM以满足每个客户端的特定需求。然而,个性化的引入可能会导致过拟合问题。如果个性化要求过于详细,LLM可能会对特定客户端的数据过拟合,从而导致在其他客户端或任务上性能下降。解决个性化和过拟合的挑战需要在微调过程中采取适当的正则化和激励措施,以在个性化程度和LLM的泛化之间取得平衡。

3) 通信效率和模型准确性:PFL涉及多个参与者之间的通信和协作。通信开销可能是一个重要挑战,特别是在具有LLM的众多参与者的场景中。频繁的通信可能会增加通信延迟和资源消耗。此外,通信的不可靠性或不稳定性可能导致模型更新的丢失或延迟,这可能直接影响LLM的准确性和性能。解决这个问题需要设计高效的通信协议和策略,以减少通信开销,同时确保数据和模型参数的可靠传输。

7. 结论

本文首先总结了LLM的三个学习阶段,并讨论了将FL与LLM相结合的潜在解决方案。接下来,提出了两种针对不同微调方法的PFL。具体而言,介绍了基于客户端偏好的个性化联邦指令微调PFIT。然后,设计了两种基于有效性和安全性的奖励模型,并使用RLHF基于客户端提供的不同奖励模型的多样组合对LLM进行微调。此外,提出了基于本地非IID数据微调下游分类任务的个性化联邦任务微调PFTT。在PFTT中,使用全局适配器实现设备间的全局信息交换,并结合本地的LoRA来定制个性化的LLM。最后,进行了仿真实验,验证了所提出的方法有效性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值