题目:Large AI Model-Based Semantic Communications
作者:江沸菠, 彭于波, 董莉, 王可之, 杨鲲, 潘存华, 尤肖虎
内容整理:江沸菠
期刊:IEEE Wireless Communications Magzine,2024
代码:https://github.com/jiangfeibo/LAMSC.git
论文地址:https://arxiv.org/abs/2307.03492(查看全文请点击原文链接)
引用:F. Jianget al., "Large AI Model-Based Semantic Communications," inIEEE Wireless Communications, vol. 31, no. 3, pp. 68-75, June 2024, doi: 10.1109/MWC.001.2300346.
语义通信(SC)是一种新兴的智能范式,为未来的各种应用(如元宇宙、混合现实和万物互联)提供解决了方案。然而,在当前的语义通信系统中,知识库(KB)的构建面临着一系列挑战,包括有限的知识表达、频繁的知识更新和不安全的知识共享。幸运的是,AI大模型包含了广泛的世界知识,能够为语义通信的知识库构建提供强大的支持。本文提出了一种基于AI大模型的语义通信(LAM-SC)框架。首先设计了基于Segment Anything Model(SAM)的知识库(SKB),它可以利用通用的语义知识将原始图像分割为不同的语义片段。然后,提出了一种基于注意力的语义整合(ASI),以权衡由SKB生成的语义片段,并将它们集成为具有语义感知的图像。此外,提出了一种自适应语义压缩(ASC)编码,以消除语义特征中的冗余信息,减少通信开销。最后,通过模拟实验,证明了LAM-SC框架的有效性以及基于大AI模型的知识库在未来语义通信中的重要性。
目录