开源:基于AI大模型的语义通信

题目:Large AI Model-Based Semantic Communications

作者:江沸菠, 彭于波, 董莉, 王可之, 杨鲲, 潘存华, 尤肖虎

内容整理:江沸菠

期刊:IEEE Wireless Communications Magzine,2024

https://github.com/jiangfeibo/LAMSC.git

论文地址https://arxiv.org/abs/2307.03492(查看全文请点击原文链接)

引用:F. Jianget al., "Large AI Model-Based Semantic Communications," inIEEE Wireless Communications, vol. 31, no. 3, pp. 68-75, June 2024, doi: 10.1109/MWC.001.2300346.

语义通信(SC)是一种新兴的智能范式,为未来的各种应用(如元宇宙、混合现实和万物互联)提供解决了方案。然而,在当前的语义通信系统中,知识库(KB)的构建面临着一系列挑战,包括有限的知识表达、频繁的知识更新和不安全的知识共享。幸运的是,AI大模型包含了广泛的世界知识,能够为语义通信的知识库构建提供强大的支持。本文提出了一种基于AI大模型的语义通信(LAM-SC)框架。首先设计了基于Segment Anything Model(SAM)的知识库(SKB),它可以利用通用的语义知识将原始图像分割为不同的语义片段。然后,提出了一种基于注意力的语义整合(ASI),以权衡由SKB生成的语义片段,并将它们集成为具有语义感知的图像。此外,提出了一种自适应语义压缩(ASC)编码,以消除语义特征中的冗余信息,减少通信开销。最后,通过模拟实验,证明了LAM-SC框架的有效性以及基于大AI模型的知识库在未来语义通信中的重要性。

目录

1. 引言

1.1  语义通信系统中通用知识库的组成

1.2  语义通信系统中当前知识库方案存在的问题

1.3  贡献

2. 语义通信系统中基于大AI模型知识库

2.1  基于AI大模型的知识库的优势

2.2  语义通信系统中AI大模型的设计建议

3. LAM-SC框架的架构

3.1  LAM-SC框架简介

3.2  SKB

3.3  ASI

3.4  ASC

4. LAM-SC框架的训练

5. 仿真结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值