- 博客(17)
- 收藏
- 关注
原创 未来通信中的大型人工智能模型:基础、应用与挑战的全面综述
题目:A Comprehensive Survey of Large AI Models for Future Communications: Foundations, Applications and Challenges作者:江沸菠,潘存华,董莉,王可之,Merouane Debbah,Dusit Niyato,Zhu Han 来源: arXiv:2505.03556, 2025论文地址:https://arxiv.org/abs/2505.03556(查看全文请点击原文链接)代码仓库:https://
2025-05-10 15:47:59
848
原创 CommGPT:基于图和检索增强的多模态通信基础模型
大语言模型(LLM)具有人类级别的认知与决策能力,是实现6G通信的关键技术之一。然而,将LLM应用于通信领域面临三大挑战:1)通信领域数据不足;2)输入模态受限;3)知识检索困难。为应对上述问题,我们提出了一种专为通信设计的多模态基础模型——CommGPT。
2025-05-09 14:54:38
1066
1
原创 基于注意力机制的无人机轨迹优化方法:面向无线能量传输的物联网系统
在无线能量传输(WPT)辅助的物联网(IoT)系统中,无人机(UAV)面临资源受限和轨迹规划次优等挑战。基于强化学习(RL)的轨迹规划方案在大规模系统优化时存在搜索效率低和学习不稳定的问题。为解决这些问题,提出基于Graph Transformer 的注意力 UAV 轨迹优化(AUTO)框架,包括注意力轨迹优化模型(ATOM)和基于 Actor-Critic 的轨迹学习方法(TENMA)。
2025-05-09 14:50:38
906
原创 M4SC:基于MLLM的多模态、多任务和多用户语义通信系统
本文针对语义通信设计了一种定制化 MLLM,并提出基于 MLLM 的多模态、多任务、多用户语义通信(M4SC)系统。首先,利用Kolmogorov-Arnold Network(KAN)实现 MLLM 的多模态对齐,提升不同模态数据在语义空间中的表示精度。其次,提出基于任务指令跟随的多任务微调方法,采用统一任务指令模板描述不同的语义通信任务,以增强 MLLM 在多任务指令理解与执行方面的能力。此外,通过设计语义共享机制,分别传输多用户的公共语义信息与私有语义信息,从而提高语义通信的整体效率。
2025-04-23 12:38:48
999
原创 用于工业边缘火灾监控的可解释语义联邦学习
在火灾监控中,工业物联网(IIoT)设备需要频繁传输大量监控数据,这导致了巨大的频谱资源消耗。因此,我们提出了一种工业边缘语义网络(IESN),使IIoT设备能够通过语义通信(SC)发送火灾警报。因此,我们需要考虑以下几个方面:1)数据隐私与安全;2)异构设备的SC模型适配;3)语义的可解释性。
2025-01-14 08:35:56
749
原创 大型生成模型辅助的人脸对话语义通信系统
生成式人工智能(AI)的快速发展不断激发语义通信(SemCom)的潜力。然而,当前的语义通信系统在端到端通信中仍然面临诸如低带宽利用率、语义歧义和体验质量(QoE)差等挑战。本文提出了一种大型生成模型辅助的人脸对话(Talking-face)语义通信系统(LGM-TSC),专为高质量的人脸视频通信设计。
2024-12-26 18:41:01
1083
原创 面向生成式AI辅助语义通信的个性化联邦学习
语义通信(SC)专注于传输语义信息而不是原始数据。这种方法为移动用户(MU)上的各种智能应用所引发的频谱资源利用问题提供了高效解决方案。近年来,生成式人工智能(GAI)模型展现了卓越的内容生成和信号处理能力,为提升语义通信带来了新的机遇。因此,本文提出了一种生成式人工智能辅助的语义通信(GSC)模型,该模型部署在MU和基站(BS)之间。为了在保护隐私和适应MU异构需求的同时使用MU的本地数据训练GSC模型,引入了个性化语义联邦学习(PSFL)。该方法结合了个性化本地蒸馏(PLD)和自适应全局剪枝(AGP)。
2024-12-23 09:34:39
772
原创 支持 GAI 的可解释个性化联邦半监督学习
联邦学习(FL)是一种常用于移动用户(MU)训练人工智能(AI)模型的分布式算法,然而,在将FL应用于现实场景时,会面临诸多挑战,如标签稀缺、数据非独立同分布(non-IID)以及不可解释性。因此,本文提出了一种新的FL框架,称为XPFL。
2024-12-02 20:20:06
1121
原创 生成式大模型辅助的3D语义通信
语义通信(SC)是6G数据传输的一种新兴范式。然而,在3D场景下进行SC时,存在几个挑战:1)3D语义提取困难;2)潜在语义冗余;3)不确定的信道估计。为了解决这些问题,本文提出了一种大型生成式AI模型辅助的3D语义通信(GAM-3DSC)系统。
2024-11-29 16:29:30
1289
原创 面向LLM的个性化无线联邦学习
大语言模型(LLM)已经彻底改变了自然语言处理任务。然而,它们在无线网络中的部署仍面临隐私和安全的挑战。联邦学习(FL)已经成为解决这些挑战的一种有前途的方法。然而,它依然存在着一些问题,包括针对海量异构数据的低效处理、资源密集型的训练以及高通信开销。为了解决这些问题,本文首先比较了无线网络中LLMs的不同学习阶段及其特点。接下来,介绍了两种具有低通信开销的个性化无线联邦微调方法。
2024-11-27 21:32:06
816
原创 基于视觉语言模型的跨模态语义通信系统
语义通信(SC)近年来作为一种新型通信范式出现,通过创新的语义传输概念成功地克服了香农的物理容量限制。然而,现存的图像语义通信(ISC)系统在动态环境中面临着几个挑战,包括低语义密度、灾难性遗忘以及不确定的信噪比(SNR)。为了解决这些挑战,本文提出了一种新颖的基于视觉语言模型的跨模态语义通信(VLM-CSC)系统。
2024-11-27 16:00:07
1635
原创 AI大模型赋能的多模态语义通信
多模态信号,包括文本、音频、图像和视频,可以被整合到语义通信(SC)中,在语义层面提供低延迟、高质量的沉浸式体验。然而,多模态语义通信面临着一些挑战,包括数据异构、语义歧义和信号衰落。AI大模型的最新进展,特别是多模态语言模型(MLM)和大语言模型(LLM),为这些问题提供了潜在的解决方案。为此,本文提出了基于AI大模型的多模态语义通信(LAM-MSC)框架。
2024-11-25 08:25:21
1369
原创 CommLLM: 面向6G的LLM增强的多智能体系统(开源)
大型语言模型(LLM)的快速发展为6G通信带来了巨大的机遇——例如网络优化和管理——通过允许用户使用自然语言向LLM输入任务需求。然而,直接在6G中应用原生LLM面临各种挑战,例如缺乏通信数据和知识,以及逻辑推理、评估和改进能力有限。将LLM与检索、规划、记忆、评估和反思等智能体的能力相结合,可以极大增强LLM在6G通信中的潜力。为此,本文提出了CommLLM,这是一个多智能体系统,具备定制的通信知识和工具,用于通过自然语言解决通信相关任务。
2024-11-20 10:51:28
1206
原创 LAMBO:AI大模型赋能边缘智能
下一代边缘智能有望通过卸载技术使各种应用受益。然而,传统的卸载架构面临着许多问题,包括异构约束、局部感知、不确定泛化和缺乏可追踪性。因此,本文提出了一个基于大型人工智能模型的卸载 (LAMBO) 框架,该框架拥有超过十亿个参数来解决这些问题。
2024-11-19 11:06:15
1161
1
原创 开源:基于AI大模型的语义通信
语义通信(SC)是一种新兴的智能范式,为未来的各种应用(如元宇宙、混合现实和万物互联)提供解决了方案。然而,在当前的语义通信系统中,知识库(KB)的构建面临着一系列挑战,包括有限的知识表达、频繁的知识更新和不安全的知识共享。幸运的是,AI大模型包含了广泛的世界知识,能够为语义通信的知识库构建提供强大的支持。本文提出了一种基于AI大模型的语义通信(LAM-SC)框架。
2024-11-19 11:03:17
2304
1
原创 趣谈什么是深度学习
趣谈深度学习1. 从感知器说起2. 多层感知器神经网络3. 神经网络的困惑4. 深度学习诞生(1)更深的网络结构(2)海量的数据驱动(3)强大的计算平台5. 深度学习的分类(1)破译图像的密码——卷积神经网络(2)洞悉语言的内涵——循环神经网络(3)棋逢对手,伯仲之间——生成对抗网络(4)纸上得来终觉浅,绝知此事须躬行——深度强化学习6. 总结近年来人工智能迅速发展,其中的核心技术就是深度学习,所以我们通俗介绍一下什么是深度学习。1. 从感知器说起为了实现模拟人类的学习,科学家们首先设计了构成神经网络
2021-08-01 11:16:47
763
原创 轻松讲透人工智能,机器学习和深度学习的关系
轻松讲透人工智能,机器学习和深度学习的关系一、人工智能二、机器学习三、深度学习四、实例五、总结一、人工智能1956年John McCarthy教授在达特矛斯会议上提出的:人工智能就是要让机器的行为看起来就像是人所表现出的智能行为一样。因此人工智能可以理解为让机器赋予人的智能。通过软件和硬件的结合,一台人工智能设备能够像人类一样思考或者模仿人类的行为。例如大名鼎鼎的波士顿动力机器人:人工智能分为强人工智能“General AI”和弱人工智能“Narrow AI”,其中强人工智能指的是类似于人类智慧
2021-01-02 10:15:10
808
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人