力扣—378有序矩阵第k小的数

题目描述

给定一个 n x n 矩阵,其中每行和每列元素均按升序排序,找到矩阵中第 k 小的元素。
请注意,它是排序后的第 k 小元素,而不是第 k 个不同的元素。

示例:

matrix = [
   [ 1,  5,  9],
   [10, 11, 13],
   [12, 13, 15]
],
k = 8,

输出:13

解题思路

由于每行均为递增序列,而且是n x n的方阵,所以可以维护一个小根堆,首先取第一列数据[1, 10, 12],维护一个小根堆(堆顶元素为1),然后从堆弹出k - 1次,那么下一次弹出的就是第k小的元素,假设弹出1后,判断是否到了最后一列,如果没有到,那么往堆中加入同行下一个元素,这里是加入5,所以新的堆为[5, 10, 12],再弹出5,以此类推。

import heapq
class Solution(object):
    def kthSmallest(self, matrix, k):
        n = len(matrix)
        pq = [(matrix[i][0], i, 0) for i in range(n)]
        heapq.heapify(pq)
        ret = 0
        for i in range(k - 1):
            num, x, y = heapq.heappop(pq)
            if y != n - 1:
                heapq.heappush(pq, (matrix[x][y + 1], x, y + 1))
        return heapq.heappop(pq)[0]

S = Solution()
print(S.kthSmallest([[ 1,  5,  9],
                     [10, 11, 13],
                     [12, 13, 15]], 8))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值