(DP状态压缩)Mondriaan's Dream(P2411)

题意:给出一个N*M的矩形,用许多的1*2的小方块,把大矩形填满的方式有多少种。


网址:http://poj.org/problem?id=2411


解法 1:在位中1表示横着的,0表示竖着的下面一位。


#include<iostream>
#include<cstdio>
#include<string>
using namespace std;

int n,m;
int Next;
int next[14000][2];
long long dp[12][1<<11];

void dfs(int len,int from,int to)
{
	if (len>m)
		return;
	if (len==m)
	{
		next[Next][0]=from;
		next[Next++][1]=to;
		return;
	}
	dfs(len+2,(from<<2)+3,(to<<2)+3);
	dfs(len+1,(from<<1)+1,to<<1);
	dfs(len+1,from<<1,(to<<1)+1);
}

int main()
{
	freopen("in","r",stdin);
	int i,j,k;
	while (cin>>n>>m,n&&m)
	{
		if (n<m)
			swap(n,m);
		Next=0;
		dfs(0,0,0);
		memset(dp,0,sizeof(dp));
		dp[0][(1<<m)-1]=1;
		for (i=0;i<n;i++)
			for (j=0;j<Next;j++)
				dp[i+1][next[j][1]]+=dp[i][next[j][0]];
		cout<<dp[n][(1<<m)-1]<<endl;
	}
	
	return 0;
}


解法2:

用2进制的01表示不放还是放
第i行只和i-1行有关
枚举i-1行的每个状态,推出由此状态能达到的i行状态
如果i-1行的出发状态某处未放,必然要在i行放一个竖的方块,所以我对上一行状态按位取反之后的状态就是放置了竖方块的状态。
然后用搜索扫一道在i行放横着的方块的所有可能,并且把这些状态累加上i-1的出发状态的方法数,如果该方法数为0,直接continue。
举个例子
2 4
1111
1111
状态可以由
1100 0000 0110 0011 1111
0000 0000 0000 0000 0000
这五种i-1的状态达到,故2 4 的答案为5

#include<cstdio>
#include<cstring>
long long f[30][1<<12],i,j,n,m,saya=1;
void sayatime (int i,int s1,int pos)
{
	if (pos==m) {f[i][s1]+=saya;return;}
	sayatime(i,s1,pos+1);
	if (pos<=m-2&&!(s1&1<<pos)&&!(s1&1<<pos+1)) sayatime(i,s1|1<<pos|1<<pos+1,pos+2);
}
int main()
{
	
	while(scanf("%d%d",&n,&m),n!=0)
	{
	memset(f,0,sizeof(f));saya=1;
	sayatime(1,0,0);
	for (i=2;i<=n;i++)
	for (j=0;j<1<<m;j++)
	{
		if (f[i-1][j]) saya=f[i-1][j]; else continue;
		sayatime(i,~j&((1<<m)-1),0);
	}
	printf("%lld\n",f[n][(1<<m)-1]);
	}
}




阅读更多
个人分类: 动态归划
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

(DP状态压缩)Mondriaan's Dream(P2411)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭