Agent从入门到实践
文章平均质量分 96
通俗易懂,无Agent基础也能读懂
人工智能AI技术
专注于AI研发和教育,帮助别人就是帮助自己
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【Agent从入门到实践】51 框架选型建议:根据业务需求选择合适的框架
以业务需求为核心,匹配框架的核心优势,兼顾团队能力和项目阶段,不盲目追求功能多,只选适合的。LangChain的灵活、AutoGPT的便捷、Qwen-Agent的企业级落地、LangChain-ChatChat的本土化私有化、文心Agent的商用稳定性,各有各的价值,没有最好的框架,只有最适合自己业务的框架。希望这篇文章的选型方法和建议,能帮你理清思路,避开选型的坑,快速找到适合自己业务的框架,让Agent开发少走弯路,高效落地!原创 2026-02-05 18:28:20 · 601 阅读 · 0 评论 -
【Agent从入门到实践】50 国产Agent框架:适配国内大模型,本土化开发优势
国内开发、中文场景、数据敏感:闭眼选国产框架,省心省力不踩坑;需对接国外大模型、全球化业务:可选国外框架,搭配国产插件做本土化适配;实际开发也能混搭:用LangChain做流程编排,用Qwen-Agent做中文语义处理,兼顾灵活与本土~其实现在国产Agent框架早就不是“替代品”了,而是“更优解”!它吃透了咱们国内的开发场景、大模型生态、合规要求,把中文语义、本土化工具、私有化部署这些刚需做到了极致,不管是新手入门、中小企业开发,还是企业级复杂应用,都能完美适配~原创 2026-01-31 16:37:52 · 292 阅读 · 0 评论 -
【Agent从入门到实践】49 AutoGPT:自主决策Agent框架,快速搭建自主智能体
AutoGPT是“全自动的傻瓜相机”,开箱即用,快速出片;LangChain是“专业的单反相机”,可定制性强,能拍大片,但需要一定的操作技巧~ 实际开发中,也可以两者结合,用LangChain定制复杂流程,用AutoGPT做其中的自主执行模块,效率翻倍~其实AutoGPT的核心就是“把复杂的决策过程封装起来,让开发者只关注目标”,它不用你懂架构、不用你编流程、不用你选工具,只需要定好“名字、角色、目标”,剩下的全自动化搞定,真正实现了“低代码甚至零代码搭建自主智能体”~原创 2026-01-29 19:50:48 · 293 阅读 · 0 评论 -
【Agent从入门到实践】48 LangChain:最常用的Agent开发框架,核心功能与使用入门
Agent要干活,离不开工具,LangChain内置了上百种常用工具,覆盖几乎所有场景,而且还支持自定义工具,自己写的脚本也能让Agent调用,简直无敌~内置常用工具代码类:Python Code Interpreter(代码解释器,能跑代码、画图表、分析数据);搜索类:百度搜索、谷歌搜索、SerpAPI(搜索引擎)、Tavily(AI专用搜索);数据类:Excel/CSV处理、SQL数据库查询(MySQL/PostgreSQL)、MongoDB操作;原创 2026-01-29 18:22:33 · 376 阅读 · 0 评论 -
【Agent从入门到实践】47 与前端系统集成:通过API对接,实现前端交互
目前国内还是很缺AI人才的,希望更多人能真正加入到AI行业,共同促进行业进步。想要系统学习AI知识的朋友可以看看我的教程http://blog.csdn.net/jiangjunshow,教程通俗易懂,风趣幽默,从深度学习基础原理到各领域实战应用都有讲解。现在做Web开发,哪还有前后端揉在一块儿写的呀?早就流行“前后端分离”啦!简单说就是后端管数据(比如查数据库、算结果),前端管展示(比如页面长得啥样、用户点了啥反应),而它们俩沟通的“桥梁”就是API接口~你想想看,要是没有API对接,前端页面就是个空架子原创 2026-01-29 15:09:24 · 954 阅读 · 0 评论 -
【Agent从入门到实践】46 自动化工具集成:结合Jenkins、GitLab CI,实现研发流程自动化
其实Jenkins和GitLab CI的集成一点都不难,核心就是"配置连接 → 定义流程 → 自动触发"这三步。2025年的DevOps趋势就是智能化、低代码化,咱们不用搞复杂的配置,借助工具的新功能,就能快速搭建稳定的自动化流程~想想看,以前要花几小时的构建、测试、部署工作,现在几分钟就能自动完成,开发者能把更多时间花在写代码上,运维也不用熬夜手动操作,这就是自动化的魅力呀!原创 2026-01-29 15:08:42 · 775 阅读 · 0 评论 -
【Agent从入门到实践】45 与后端系统集成:Agent作为服务,嵌入业务流程
讲清了4个核心集成原则,这是生产级落地的根本,避免90%的集成踩坑;给出了两种通用集成方案:同步直连调用(简单场景)和基于消息队列的异步集成(生产级首选),覆盖了绝大多数后端业务场景,代码可直接复制使用;实现了低代码平台/SaaS系统的快速集成,不用写代码,5分钟就能实现AI升级,适配非专业开发人员的场景;总结了生产级的集成规范和避坑指南,都是实际落地的经验,能保证集成后业务系统和Agent服务的稳定运行。到这里,咱们的多Agent框架已经完成了从0到1的工业级落地全流程。原创 2026-01-29 11:44:41 · 755 阅读 · 0 评论 -
【Agent从入门到实践】44 监控与日志:添加监控指标、日志记录,方便问题排查
目前国内还是很缺AI人才的,希望更多人能真正加入到AI行业,共同促进行业进步。想要系统学习AI知识的朋友可以看看我的教程http://blog.csdn.net/jiangjunshow,教程通俗易懂,风趣幽默,从深度学习基础原理到各领域实战应用都有讲解。各位小伙伴,咱们的多Agent框架现在能打包、能部署、能对外提供API服务了,但如果现在服务出问题了,比如:API接口响应突然变慢、Agent执行任务报错、容器CPU占用飙到100%,你能快速找到原因吗?如果没加日志和监控,大概率只能对着终端翻零散的输出,原创 2026-01-28 17:30:11 · 374 阅读 · 0 评论 -
【Agent从入门到实践】43 接口封装:将Agent封装为API服务,供其他系统调用
这篇咱们用FastAPI把多Agent框架封装成了标准化的RESTful API服务,实现了参数标准化、响应统一化、异常全局化、接口文档化、身份验证化打造了Agent的“对外窗口”,能被Python、Java、前端、小程序等任何系统无缝调用,实现了Agent和其他业务系统的联动。全程低耦合开发,不修改原有框架代码,后续框架升级不影响API服务。无缝对接Docker镜像,一键部署成可对外提供服务的API容器,部署后立马能用。原创 2026-01-28 17:16:17 · 897 阅读 · 0 评论 -
【Agent从入门到实践】42实战:用Docker打包Agent,实现一键部署
各位小伙伴,咱们的多Agent框架优化到现在,功能全、容错强,本地跑起来贼溜,但一到团队协作就容易掉链子——“我这能跑啊,你那边咋报错了?”“是不是依赖版本不对?”“你用的Python3.8还是3.10?这些问题的根源就是环境不一致,而Docker的核心作用就是“一次打包,到处运行”,把框架的代码、依赖、Python版本、运行配置全部装进一个“独立容器”里,不管是Windows、Mac还是Linux,不管是本地电脑还是云服务器,只要装了Docker,一键运行就能用,环境完全一致,再也不用折腾依赖!原创 2026-01-28 16:47:16 · 821 阅读 · 0 评论 -
【Agent从入门到实践】41 部署方式选型:本地脚本、Docker容器、云服务部署
各位小伙伴,咱们的多Agent框架一路优化到现在,决策快、效率高、省资源、容错强,本地跑起来贼丝滑~ 但真正的生产落地,第一步就是选对部署方式——这步选不对,后面要么运维贼麻烦,要么扛不住流量,甚至直接影响业务使用。本地脚本部署:最简单的方式,直接跑Python脚本,零配置成本,适合自己测试、本地开发Docker容器部署:打包成镜像,一键运行,环境一致不踩坑,适合小团队内部使用、线下部署云服务部署:部署到云服务器/云函数,支持高并发、弹性扩容,7×24小时在线,适合对外提供服务、生产级落地。原创 2026-01-28 16:35:11 · 1070 阅读 · 0 评论 -
【Agent从入门到实践】40 容错优化:异常处理、重试机制、降级策略
各位小伙伴,咱们的多Agent框架一路优化到现在,决策快、执行效率高、资源用得省,看似啥都行,但只要一遇到网络波动、工具故障、数据异常调用web_search工具时网络超时,整个检索任务直接失败,写作Agent没数据可用向量库连接异常,向量检索直接崩掉,依赖检索结果的Agent全趴窝单个Agent执行出错,整个并行任务流程直接中断,前功尽弃高并发下部分工具调用失败,框架没有备用方案,只能返回任务失败说白了,咱们之前的框架只有正常执行逻辑,没有异常兜底逻辑。原创 2026-01-28 11:38:01 · 724 阅读 · 0 评论 -
【Agent从入门到实践】39 资源优化:向量数据库检索优化、内存占用控制
各位小伙伴,咱们的多Agent框架一路优化下来,决策快、执行效率高,异步并行干活那叫一个丝滑~ 但只要一处理海量数据(比如上万篇文档的向量检索)、高并发任务向量数据库检索半天出结果,多Agent等着用数据,直接拖慢整个流程跑着跑着内存占用一路飙升,从几个G吃到几十个G,最后框架直接OOM崩掉明明很多数据用不上,却一直占着内存,算力白白浪费说白了,就是框架的资源利用效率太低了——向量检索没做优化,查海量数据全靠硬扫;内存管理没做控制,数据和任务占着资源不释放。这篇咱们就专攻资源优化,核心搞定。原创 2026-01-27 21:18:34 · 688 阅读 · 0 评论 -
【Agent从入门到实践】38 执行效率优化:工具调用异步化、并行执行
各位小伙伴,前面咱们把多Agent框架的决策环节磨得贼顺了——Prompt精准不跑偏、LLM调用不重复、简单问题秒响应。但跑数据统计、多关键词检索、批量计算调用个耗时的数据分析工具,Agent就搁那干等,啥别的活都干不了要查3个不同维度的行业数据,检索Agent得挨个查,不能同时来批量处理10组小数据,计算Agent得一个一个算,明明算力够支撑多任务说白了,就是执行环节还停留在“串行同步”的阶段,没把多Agent的分工优势、硬件的算力优势发挥出来。这篇咱们就针对通用数据处理/检索/计算场景。原创 2026-01-27 18:31:13 · 1120 阅读 · 0 评论 -
【Agent从入门到实践】37 决策效率优化:Prompt优化、LLM调用缓存、决策逻辑简化
各位小伙伴,经过前两篇的打磨,咱们的多Agent框架是不是已经很顺手啦?决策慢:Agent拿到任务后,要想半天才能确定下一步做什么,尤其是工具调用前,纠结半天参数怎么填花钱多:同一个问题反复调用LLM,比如多次查询同一个共享数据,每次都要花API费,纯属浪费逻辑绕:简单任务也要走完整决策流程,比如只是想获取一个已有的共享数据,还要先查全局状态、检测冲突,没必要!原创 2026-01-27 17:48:08 · 950 阅读 · 0 评论 -
【Agent从入门到实践】36 多Agent之间的信息同步、冲突解决
目前国内还是很缺AI人才的,希望更多人能真正加入到AI行业,共同促进行业进步。想要系统学习AI知识的朋友可以看看我的教程http://blog.csdn.net/jiangjunshow,教程通俗易懂,风趣幽默,从深度学习基础原理到各领域实战应用都有讲解。各位小伙伴,上一篇咱们搭好的多Agent框架是不是已经跑起来啦?是不是觉得“哇,多个Agent一起干活真方便”?但跑过几个复杂任务后,你肯定会遇到这些糟心情况:其实这些问题本质就两个:信息不同步和冲突没解决!多Agent协作就像团队干活,光有人分工还不够,原创 2026-01-27 14:23:40 · 750 阅读 · 0 评论 -
【Agent从入门到实践】35 搭建多Agent协作框架,实现核心流程
目前国内还是很缺AI人才的,希望更多人能真正加入到AI行业,共同促进行业进步。想要系统学习AI知识的朋友可以看看我的教程http://blog.csdn.net/jiangjunshow,教程通俗易懂,风趣幽默,从深度学习基础原理到各领域实战应用都有讲解。各位小伙伴,上一篇咱们把多Agent协作的3种模式(主从、分工、竞争)拆解得明明白白,每种模式都有专属场景和实现思路。但实际开发中,你肯定不想为每种模式写一套重复代码——比如Agent的初始化、消息传递、工具调用这些通用逻辑,应该抽出来做成“框架”,后续开原创 2026-01-26 17:46:29 · 927 阅读 · 0 评论 -
【Agent从入门到实践】34 多Agent协作的核心模式:主从模式、分工模式、竞争模式
各位小伙伴,上一篇咱们把单Agent的多工具集成玩明白了——一个Agent能自己选工具、跑流程,解决“查资料→写文件”“算数据→存结果”这类单链路任务。“帮我写一篇AI发展报告:查2024-2025最新趋势→做数据分析→写报告框架→润色成文→导出PDF”“开发一个小工具:需求分析→写代码→测试→生成文档”“策划一场线上活动:调研竞品→定主题→写方案→做宣传图→发推广文”这些任务需要“分工协作”,靠一个Agent忙不过来,就像一个公司需要产品、开发、测试分工一样,这时候就得用多Agent协作了!原创 2026-01-26 16:49:53 · 1018 阅读 · 0 评论 -
【Agent从入门到实践】33 集成多工具,实现Agent的工具选择与执行
各位小伙伴,上一篇咱们把代码运行、网页检索、文件操作三大核心工具都封装好了,每个工具都能单独干活。但真正的Agent不是“工具列表”,而是会自己选工具、按顺序调用、处理结果、直到解决问题的智能体。这篇就带大家把这些工具集成到一个完整Agent自动判断“要不要用工具、用哪个工具”多工具链式调用(比如:查资料 → 写代码 → 存文件)上下文记忆 + 错误处理 + 循环决策可直接运行的Python代码,复制粘贴就能用全程口语化,不讲虚的,直接上干货!工具选择靠大模型:通过tools。原创 2026-01-25 20:11:17 · 765 阅读 · 0 评论 -
【Agent从入门到实践】32 常用工具封装
各位小伙伴,上一篇咱们搞懂了 Agent 工具调用的核心逻辑——“大脑(大模型)+ 手脚(工具)+ 指挥系统”。但光有逻辑还不够,真正落地要靠好用、稳定、安全的工具。代码运行工具:让 Agent 能安全执行 Python 代码(算数据、跑脚本、生成图表)网页检索工具:让 Agent 能联网查资料、爬网页、获取实时信息文件操作工具:让 Agent 能读、写、删、列文件,实现本地数据交互全部用 Python 实现,带详细注释 + 安全防护,复制粘贴就能用!代码运行工具。原创 2026-01-25 15:20:34 · 910 阅读 · 0 评论 -
【Agent从入门到实践】31 工具调用的核心逻辑:Agent如何选择并执行工具
各位小伙伴,上一篇咱们把代码注释生成Agent的“本体”写出来了,能看懂代码、记住偏好、生成注释。但真正让Agent变“智能”、能解决复杂问题的,是工具调用——就像人干活要拿扳手、计算器、查资料一样,Agent也得会“选工具、用工具”。这篇就用最口语、最接地气的方式,把Agent工具调用的核心逻辑讲透:从“什么时候用工具”“用哪个工具”“怎么用工具”“用完怎么处理结果”,全程带Python代码+注释+调试思路,让你看完就能给你的Agent装上“工具手”!原创 2026-01-24 23:41:01 · 1121 阅读 · 0 评论 -
【Agent从入门到实践】30 开发第一个Agent——代码实现
各位小伙伴,环境搭建和需求定义都搞定后,咱们直接进入“一站式开发”——这篇文章包含完整依赖安装+模块代码实现+整合测试+调试指南,从0到1搭建可运行的“代码注释生成Agent”,复制粘贴就能跑通,新手也能轻松跟上!核心目标:实现一个命令行版Agent,支持Python代码的Google/NumPy风格注释生成,能记住用户的注释规范(作者、日期等),支持批量输入代码、注释优化。代码解析:tree-sitter(精准识别代码结构)大模型调用:openai/dashscope(生成注释)原创 2026-01-24 10:43:24 · 933 阅读 · 0 评论 -
【Agent从入门到实践】29 开发第一个Agent——需求定义
各位小伙伴,环境搭建好了,现在咱们要正式开发第一个完整Agent——代码注释生成Agent!可能有小伙伴会问:“直接用IDE的注释插件不就行了?为啥要做Agent?” 其实不一样:普通插件只能生成“参数说明”“返回值说明”这种机械注释,而Agent能理解代码逻辑,生成“为什么这么写”“核心思路是什么”的智能注释,还能记住你的注释风格、项目规范,越用越顺手~今天咱们不写代码,先把“需求定义”搞清楚——就像盖房子先画图纸,需求定明白了,后续开发才不会跑偏。原创 2026-01-24 10:42:27 · 790 阅读 · 0 评论 -
【Agent从入门到实践】28 开发第一个Agent——开发准备:环境搭建(Python、依赖库、大模型API密钥)
各位小伙伴,前面咱们把Agent的记忆系统讲透了,现在终于要进入实战环节——开发你的第一个Agent!但动手前,得先把“地基”打牢:环境搭建。这一步看似简单,却有很多新手踩坑:Python版本不对、依赖库冲突、API密钥配置错误……今天咱们就用最通俗的语言,手把手带你搞定所有准备工作,确保后续开发一路顺畅!安装Python(选对版本,避免兼容问题);配置依赖库(Agent开发必备,一键安装);获取大模型API密钥(OpenAI+国产模型,按需选择)。原创 2026-01-23 19:06:34 · 865 阅读 · 0 评论 -
【Agent从入门到实践】27 记忆的落地思路:短期记忆+长期记忆的结合方案
各位小伙伴,上一节咱们用Chroma搞定了Agent的短期记忆,能记住用户的即时偏好、对话上下文了。但实际开发中会发现一个问题:短期记忆只能存“最近的事”,比如一次对话的偏好,可要是用户隔了一周再来,或者想让Agent记住长期知识库(比如产品手册、历史订单),短期记忆就不够用了。短期记忆:像我们的“工作记忆”,记最近1-24小时的对话、临时需求(比如“这次要加急配送”);长期记忆:像我们的“长期记忆”,记永久有用的信息(比如用户固定偏好“永远少糖”、产品知识库、历史订单记录)。原创 2026-01-23 14:49:05 · 850 阅读 · 0 评论 -
【Agent从入门到实践】26 使用Chroma搭建本地向量库,实现Agent的短期记忆
各位小伙伴,前面咱们知道了:Chroma是本地开发的“轻量小能手”,零运维、开箱即用;而Agent的“短期记忆”,本质就是把用户对话、偏好、历史操作等信息,实时存入向量库,需要时快速检索出来——就像我们记最近发生的事一样,不用记太久,但要随用随取。今天咱们就手把手实战:用Chroma搭建本地向量库,给Agent加一个“短期记忆模块”,让它能记住用户的口味偏好、对话关键信息,下次互动时不用重复问!把用户对话、偏好存入Chroma(记忆存储);Agent回答时,自动检索相关记忆(记忆召回);原创 2026-01-23 12:03:11 · 682 阅读 · 0 评论 -
【Agent从入门到实践】25 主流向量数据库速览:Pinecone、Chroma、Milvus,本地/云端选型建议
各位小伙伴,上一节咱们搞懂了“向量”和“相似度检索”,知道了向量数据库是Agent的“语义搜索引擎”。但真要落地开发,一打开列表:Pinecone、Chroma、Milvus、Weaviate、Qdrant……瞬间头大——到底选哪个?别慌!今天咱们就用大白话+实战对比,把3个最主流的向量数据库(Pinecone、Chroma、Milvus)讲透:它们是什么、适合谁、怎么用、怎么选。最后给你一份本地/云端选型决策表,看完直接落地,不踩坑!Chroma小而美,开发调试神器,个人/小项目首选;原创 2026-01-23 09:40:25 · 1144 阅读 · 0 评论 -
【Agent从入门到实践】24 向量数据库的通俗理解:什么是向量,什么是相似度检索
各位小伙伴,上一节咱们知道了:Agent要想“懂语义、找相似、查得快”,必须靠向量数据库。但很多人一听“向量”“嵌入”“余弦相似度”,头就大了——这不是数学吗?我一个程序员,搞懂这些有啥用?其实完全不用怕!今天咱们就用大白话+生活类比,把“向量”“向量嵌入”“相似度检索”讲得明明白白,不用复杂公式,不用高等数学,看完你就能懂:向量数据库到底在干嘛,为什么它能解决传统数据库搞不定的事。咱们先抛开数学定义,用奶茶来举例子:甜度:0(无糖)~ 10(全糖)清爽度:0(浓郁)~ 10(清爽)奶味。原创 2026-01-22 16:58:33 · 763 阅读 · 0 评论 -
【Agent从入门到实践】23 为什么Agent需要向量数据库?解决传统数据库的检索痛点
用户问“夏天喝什么奶茶清爽不腻”,传统数据库搜“夏天”“清爽”,结果全是“夏天限定”“清爽包装”,根本不是口味;想给用户推荐“和他上次点的芋泥鲜奶差不多的”,传统数据库只能按“芋泥”“鲜奶”关键词搜,找不到“口感相似”的;知识库有10万条FAQ,用户问“怎么取消订单”,传统数据库要遍历全文,慢到用户都等不及。这些问题,本质上都是传统数据库的“检索痛点”——它只认“关键词”,不懂“语义”;只擅长“精确匹配”,做不了“相似查找”;处理海量非结构化数据(文本、语音、图片)时,又慢又不准。而向量数据库。原创 2026-01-22 16:31:38 · 688 阅读 · 0 评论 -
【Agent从入门到实践】22 LLM的局限性:Agent开发中需要规避的坑
各位小伙伴,前面咱们把LLM当Agent的“大脑”,玩得风生水起——调用API、写Prompt、驱动Agent干活,感觉LLM无所不能?但实际开发中你会发现:LLM不是“完美大脑”,它有不少天生的“短板”——比如会编假数据(幻觉)、记不住长对话(上下文丢失)、复杂逻辑算错(数学/推理漏洞)。这些局限性如果不规避,Agent很可能出大问题:推荐不存在的奶茶、算错库存补货量、把用户地址搞混……原创 2026-01-21 22:37:59 · 1061 阅读 · 0 评论 -
【Agent从入门到实践】21 Prompt工程基础:为Agent设计“思考指令”,简单有效即可
各位小伙伴,上一节咱们搞定了LLM的API调用——现在能让“大脑”说话了,但新问题来了:同样调用GPT-4o,为什么有的时候Agent听话又高效,有的时候却答非所问、漏洞百出?关键就在于“Prompt(提示词)”——它相当于给Agent的“思考指令”,直接决定了LLM大脑的思考方向和输出质量。就像给别人派活,你说得越清楚,对方做得越到位;指令模糊,结果自然一言难尽。原创 2026-01-21 18:39:23 · 700 阅读 · 0 评论 -
【Agent从入门到实践】20 LLM的基础使用:API调用(OpenAI、国产大模型),程序员快速上手
其实不管是OpenAI还是国产大模型,API调用的核心逻辑都是“统一的请求格式 + 对应的SDK调用 + 响应解析请求格式统一:都是通过messages参数传递“系统指令+用户输入”,通过max_tokens等参数控制输出;SDK用法类似:都需要初始化客户端(传入密钥),调用或类似方法;响应解析简单:都能从(或类似字段)中提取生成的文本。对咱们Agent开发来说,LLM API调用是“大脑”的基础——只有先学会调用LLM,才能让Agent具备“理解、推理、决策”的能力。原创 2026-01-21 17:22:22 · 933 阅读 · 0 评论 -
【Agent从入门到实践】19 LLM是Agent的“大脑”:通俗理解LLM如何支撑Agent的决策
各位小伙伴,前面咱们把 Agent 的“手脚”(执行、脚本化)、“眼睛耳朵”(感知、API)、“记忆本”(数据处理、CSV/JSON)都讲得差不多了。Agent 到底是怎么“想”的?用户说“帮我点杯奶茶,要清爽点的”,Agent 怎么知道该推荐“青提茉莉少冰”而不是“全糖珍珠”?库存不够了,Agent 怎么判断是“先暂停接单”还是“先自动补货”?多个任务同时来,Agent 怎么排优先级:先处理紧急订单,还是先生成周报?LLM(大语言模型)就是 Agent 的“大脑”。原创 2026-01-21 16:34:44 · 872 阅读 · 0 评论 -
【Agent从入门到实践】18 脚本化编程:批量执行、自动化逻辑
各位AI入门的小伙伴们,前面咱们搞定了Agent的“信息交互”(HTTP/API)和“信息处理”(JSON/CSV解析),现在Agent已经能“看懂”外部数据、“听懂”用户需求了!但还有个关键能力没解锁——Agent怎么“自动干活”?每天早上8点自动查天气,给用户发穿衣提醒;批量处理100个Excel文件,提取关键数据生成报告;当库存低于阈值时,自动给供应商发补货通知;每隔1小时检查订单状态,给用户推送物流更新。这些“重复、有规律、需要定时/批量执行”的任务,正是脚本化编程。原创 2026-01-21 15:32:47 · 798 阅读 · 0 评论 -
【Agent从入门到实践】17 数据处理基础:JSON/CSV解析、简单数据结构,处理Agent的输入输出
各位AI入门的小伙伴们,前面咱们搞定了Agent与外部交互的“通用语言”——HTTP/API。但新问题来了:外部系统返回的数据(比如天气API的JSON、订单系统的CSV),Agent怎么“看懂”并使用?Agent自己的输入输出(比如用户需求、决策结果),又该怎么“整理”得规范有序?数据处理基础——JSON/CSV解析(Agent最常用的两种数据格式)+ 简单数据结构(列表/字典/数据框)。这是Agent“消化信息”和“输出结果”的关键,就像咱们吃饭要先嚼碎、说话要条理清晰一样。原创 2026-01-21 00:18:26 · 754 阅读 · 0 评论 -
【Agent从入门到实践】16 接口与网络:API调用、HTTP请求,Agent与外部交互的基础
各位小伙伴,前面咱们把 Agent 的“感知、决策、执行、记忆、工具调用、协作”都讲了个遍,也知道了 Python 是开发 Agent 的首选语言。但有个最底层、最关键的东西还没系统聊——Agent 怎么跟外面的世界“说话”?Agent 发一个请求 → 外部系统回一个响应。API 调用 + HTTP 请求——Agent 与外部交互的“通用语言”。全程大白话 + 最新 Python 实践(requests / httpx / aiohttp),不讲玄学,只讲你写 Agent 真正用得上的东西。原创 2026-01-20 23:20:37 · 1572 阅读 · 0 评论 -
【Agent从入门到实践】15 编程语言基础
各位AI入门的小伙伴们,前面咱们把Agent的六大核心模块(感知、决策、执行、记忆、工具调用、协作)都讲完了——现在你已经清楚Agent是“怎么干活”的了!但要动手开发Agent,第一步得选对编程语言~市面上编程语言那么多:Java、C++、JavaScript、Go、Python……为什么咱们一直用Python做示例?为什么Python会成为Agent开发的“首选语言”?原创 2026-01-20 17:35:50 · 780 阅读 · 0 评论 -
【Agent从入门到实践】14 协作模块:多Agent如何“分工配合”
各位程序员小伙伴,咱们AI Agent系列终于讲到“团队协作”了!前面咱们搞定了单个Agent的“大脑”(决策)、“记忆”(存储)、“手脚”(工具调用),但实际工作中很多任务不是单个Agent能搞定的——比如让Agent完成“市场调研报告”,可能需要一个Agent查数据、一个Agent分析数据、一个Agent写报告,这就需要多Agent协作。原创 2026-01-20 15:40:11 · 696 阅读 · 0 评论 -
【Agent从入门到实践】13 工具调用模块:如何调用工具
各位程序员小伙伴,咱们AI Agent入门系列又更新啦!上一节搞定了Agent的“记忆系统”,今天来解锁它的“超能力”——工具调用模块。你想想,咱们写代码时会调用各种API、读写文件、用现成的框架模型,Agent也一样!光有决策和记忆还不够,能“动手做事”才是关键。这一节咱们就用大白话讲清Agent工具调用的原理,还会手把手教你用C#实现三大常见场景:调用第三方API、操作本地文件、调用其他AI模型,看完直接复制代码就能跑通!// 工具调用的请求参数模型。原创 2026-01-20 12:32:59 · 681 阅读 · 0 评论 -
【Agent从入门到实践】12 记忆模块:Agent如何“记住信息”
各位程序员小伙伴,咱们继续AI Agent的入门之旅!上一节聊完了Agent的“大脑”(决策模块),今天来扒一扒它的“记事本”——记忆模块。你想啊,咱们写代码的时候,会临时记个变量名、接口参数(短期记忆),也会把常用的工具类、框架用法存在脑子里(长期记忆)。AI Agent也一样,要想不“失忆”,就得有靠谱的记忆系统。这一节咱们就用大白话讲清短期记忆和长期记忆的区别,还会给大家上ML.NET的实操代码,看完就能动手实现!// 记忆项模型:存储记忆的内容和时间戳// 记忆内容set;// 创建时间。原创 2026-01-20 12:01:42 · 980 阅读 · 0 评论
分享