数据预处理之归一化

本文介绍了数据预处理中的归一化方法,通过MATLAB的mapminmax函数和Python的sklearn库展示了如何进行MinMaScaler和MaxAbsScaler两种归一化操作,用于将数据映射到[0,1]和[-1,1]区间。并给出了处理新数据的示例。" 116696006,10766042,Java工程师JVM全面指南:原理、内存、调优与面试,"['JVM调优', 'JVM垃圾回收机制', 'JVM内存模型', 'JVM面试', 'JVM原理']
摘要由CSDN通过智能技术生成

MATLAB 可直接调用函数mapminmax
示例:
%读入矩阵A
A=xlsread(‘D:文件名.xlsx’);
%对矩阵归一化
F=mapminmax(A);
%输出归一化后的矩阵F
xlswrite('D:新文件名‘,F)

https://blog.csdn.net/weixin_38706928/article/details/80329563
链接含代码

目录

归一化

数据归一化的背景介绍

MinMaxScaler:归一到 [ 0,1 ]

MaxAbsScaler:归一到 [ -1,1 ]

标准化

去均值,方差规模化

归一化
数据归一化的背景介绍
在之前做聚类分析的时候我们发现,聚类的效果往往特别受其中一列数据的影响,使得原本应该散布在二维平面图上的点,变成聚集在一条线上的点,可想而知,其聚类效果肯定不理想。

左图:为所有数据都归一化之后的聚类分析散点图;

右图:为其中一列是合同金额,并且没有归一化数据的散点图;

归一化方法有两种形式,一种是把数变为(0,1)之间的小数,一种是把有量纲表达式变为无量纲表达式,成为纯量。后者常见于微波之中,也就是电路分析、信号系统、电磁波传输等,研究物理的人会比较熟悉。而像我们这些普通的数据分析师的日常工作中,不太会遇见需要归一化为无量纲表达式的情况,因此只讨论归

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值