- 博客(19)
- 收藏
- 关注
原创 python网络框架DJANGO应用--哎淘网
已经许久没有来csdn更新博客了,排名也到了千里之外,估计再过一阵子就扫地出门了。在学校的时候没有用过脚本,但久闻python的大名,现在它已成为我工作中不可或缺的一个工具。 一直对建站抱有一点小兴趣,刚巧看到python有个无敌网络框架DJANgo,哈哈,正好满足下我的心愿。经过断断续续的学习,调试,一个简单的网站终于可以了,它就是-哎淘网 -- www.itaoinfo.co
2011-10-23 21:49:27 1069
原创 回忆过去,展望未来
回忆过去,展望未来 已有近两个月没有更新blog了,再打开看都生疏了,以后还得多管理、多经营下。过完一个完整的寒假,一回校就投入了战斗。老板开始催项目了,要求六月底要有一个完整的DEMO出来,因为我们这些小硕下半年肯定没心思搞,要找工作了。谈起这个项目,不得不发下牢骚,好歹一个863的项目,也没有个年轻教师指导下。从去年九月份开始准备,几个月都没有实质进展,一来需要大量知识储备,二来没有
2010-03-21 17:03:00 985 2
原创 2010,我来啦!
放寒假喽,估计这是我学生生涯最后一个完整点的寒假了,舍不得。感觉一年的时间过得好快,似乎是学到了点什么,心中却没有底,不知道是不是没有啥成果的原因,学习新知识的时间占了一大半。但这些都是有意义的,因为学的正是我所缺的,相信一点一滴积累才是正道。进入2010,一个关键的年份,要面对我人生的一个路口(找工作),有点紧张,呵呵。貌似形势一直都不太好,师兄师姐都找的挺艰难的,有压力啊。我只想找一
2010-01-27 12:46:00 586
原创 近期大杂烩
近期大杂烩 时间真的过的N快,已近月底。破事颇多,好事甚少。本月最大成就是结束了万恶的六级好事,和它真是太有缘了,硬是留着我陪它走过这三四年。希望这次它能放弃我。因为英语的缘故,很多时间被占用,在学习上耽搁了不少。本月陆陆续续的写完了meanshift的聚类的算法,结果让人失望,估计是我写的不好,在聚类的时间和结果上都不理想,对参数的调整要求比较高,和具体分布也有关,在服从高斯分布的数
2009-12-25 23:18:00 632
原创 访问破千纪念帖
从10月中旬到现在差不多刚好两个月,博客访问量破千。特发此贴纪念下。 最近一直混混沌沌,都是这万恶的英语惹的。专业学习进度较慢,实现人家的算法MEANSHIFT分割和聚类都不太理想,需要处理的细节比较多。能力有限啊,不过好歹把图论的章节看完了,模式识别里的图模型还是一头雾水。再接再厉吧!!!
2009-12-13 11:03:00 727 1
原创 Kmeans与Meanshift、EM算法的关系
Kmeans与Meanshift、EM算法的关系 Kmeans算法是一种经典的聚类算法,在模式识别中得到了广泛的应用,基于Kmeans的变种算法也有很多,模糊Kmeans、分层Kmeans等。Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans的迭代步
2009-11-26 09:33:00 10308 2
原创 Opencv之meanshift篇
Opencv之meanshift篇本文主要是介绍了OPENCV里的meanshift分割函数cvPyrMeanShiftFiltering函数。关于算法的详细叙述可参考《Mean shift: a robust approach toward feature space analysis》D,comaniciu 2003.该函数基本参照上文所描述的算法流程编写的。在opencv实现里加入
2009-11-26 08:48:00 12225
原创 OPENCV之EM算法篇
OPENCV之EM算法篇EM算法是求解最大似然函数极值的一种解法,使用的是迭代求解的方法,并且保证收敛。EM算法的应用相当广泛,包括混合高斯模型的求解,隐马尔科夫模型的求解,最大后验概率模型的求解等。最常用的是混合高斯模型的求解,把混合概率密度分解为一系列的高斯分量之和。关于EM算法的具体流程可参考网上,个人推荐一个介绍的不错的,《pattern recognition and mach
2009-11-26 08:45:00 6521 2
原创 Opencv之PCA篇
Opencv之PCA篇PCA(principal component analysis)翻译过来就是主分量分析,是一种流行的数据降维方法。通过数据降维可以实现数据的压缩,同时方便数据分析和提高算法的处理速度。PCA的原理就是通过正交变换,最大化样本协方差阵的对角元素,最小化非对角元素。具体的介绍可以参考Shlens, J., A tutorial on principal compone
2009-11-25 12:31:00 7657 3
原创 Opencv之KMEANS篇
Opencv之KMEANS篇Opencv中的K-means适用于数据预处理,但图像分割的消耗的时间太长并且效果不怎么好,使用空间信息后,图像的分割后受空间的影响很大(同一类的数据如果分布较远,不是高斯型的,就会错分),因为图像分割本身要求数据是呈超球体(高斯类)分布。K-means得到的是线性判决面,因为算法使用的准则函数是最小均方误差,相当于不同类别间求最小二乘直线拟合。这是一个局限点
2009-11-22 14:51:00 9871 2
原创 我的杭电时代——考研篇
发表于 2008-5-31 22:16我的杭电时代——考研篇 很早以前就有写这篇文章的想法了,但我这人有个毛病,就是喜欢拖,等来不及了再急急忙忙的赶。这点非常不好,可惜我一直没改过来。呵呵。最近毕业论文的初稿刚出来,可以腾点时间出来,而且刚刚逛了逛考研论坛,发现确实有必要把自己的一些心得体会写出来。希望可以帮助到学弟学妹们。 言归正传,先介绍下我的大概情况,我是X
2009-11-16 22:12:00 5914 1
原创 SURF小结
SURF: speed up robust featureSURF特点:1.使用积分图像完成图像卷积(相关)操作,2,使用Hessian矩阵检测特征值;3,使用基于分布的描述符(局部信息)。兴趣点检测相关研究:1998 Lindberg介绍自动尺度选择的概念,允许检测图像中的兴趣点在它们的特征尺度上。他实验了Hessian矩阵的行列式和Laplacian(和矩阵的迹一致)检测团状
2009-11-14 22:20:00 5224 1
原创 CUDA资料推荐及入门建议
CUDA资料推荐及入门建议CUDA(compute unified device architecture)是Nvidia(英伟达)公司的推出的一个显卡编程平台。它的特点是可以大规模的并行执行,在很多应用上比高频CPU性能高上一个或两个数量级。在早期就有了用于通用计算的显卡编程应用,叫GPGPU,但是编程模式比较麻烦,借助些第三方工具,不方便上手,所以NVIDIA瞧准这个通用并行计算的蛋糕推出
2009-11-08 21:38:00 3212 2
原创 vs05,vs08下字符的显示问题
在写一个简单的MFC对话框程序时,发现平时在编写控制台程序习惯用的字符串不能正常显示了,常显示什么“错误 3 error C2440: “=”: 无法从“const char [14]”转换为“LPCWSTR” ”。包括messagebox函数也出现了这个问题。后来在网上查了查,原来是05和08下默认支持UNICODE编码。修改的方法是1:在常量字符串前加上L,如filedialog.m_o
2009-11-03 17:45:00 1128
转载 介绍几本数学书
转自林达华博客。介绍几本数学书前面几篇谈了一些对数学的粗浅看法。其实,如果对某门数学有兴趣,最好的方法就是走进那个世界去学习和体验。 这里说说几本我看过后觉得不错的数学教科书。 1. 线性代数 (Linear Algebra): 我想国内的大学生都会学过这门课程,但是,未必每一位老师都能贯彻它的精要。这门学科对于Learning是必备的基础,对它的透彻掌握是必不可少的。我在科大一年级的时候
2009-10-31 19:31:00 800
原创 基于内容的图像检索(CBIR)会是下一个热门研究领域吗?(一)
基于内容的图像检索(CBIR)会是下一个热门研究领域吗?(一)在我们使用搜索引擎时,会在搜索选项上看到图片这个选项,我曾经用过几次,但是感觉不是做的很好,一是图片的量少,另一个是图片与我想搜索的内容有很多差异。网页搜索是基于文本的搜索,本身就是语义的一个直接表达,在文本中得到了直接的体现,所以搜索的技术相对比较简单,经过这几年的发展已经挺成熟了(至少在使用上是这样的感觉)。图片的搜索相对起步较
2009-10-26 21:36:00 1883
原创 彩色图像分割
彩色空间分割彩色空间分割是基于单色图像(灰度图)分割技术在不同颜色通道上实现的。灰度图分割技术常见的有:直方图阀值化、特征聚类、边缘检测、基于区域的、模糊技术、神经网络等。图像分割有公式化的定义(查文献)。图像分割本质上是一个心理学感知的问题,不会纯粹受分割方法不同的影响。灰度图的分割方法都是基于区域像素的非连续性或相似性。基于非连续性的方法主要是为了检测孤立的点、边缘、线(灰度突然变化的
2009-10-24 20:20:00 6674 2
原创 SIFT小结
SIFT小结《Distinctive Image Features from Scale-Invariant Keypoints》 David G,Lowe 1.介绍:特征提取过程:1,尺度空间极值检测。2,特征点定位。(包括去除不稳定的点)。3,特征点的方向赋值。4,特征点描述子生成。2.极值点检测:尺度空间由输入图像和高斯函数卷积产生。尺度空间的极值点由高斯差分函数与图像卷
2009-10-21 21:48:00 3527 1
原创 半年学习路程的一点感想及体会
时间过的好快,一晃半年过去了。觉得有必要记录些什么,但思绪很混乱,只能想到什么写什么了。请大家见谅啊,^_^!在今年的三月初,我开始接触图像处理与计算机视觉这个领域,当时觉得这个很有意思,特别是看过一些人脸识别,物体检测与跟踪等DEMO,就更加着迷了。其实以前我是一门心思想做硬件的(嵌入式系统这一块),在研一上学期的时候,还学习过ARM,linux。本科的时候有幸参加了电子设计的比赛,在学院的
2009-10-15 12:47:00 1273
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人