计算机视觉
文章平均质量分 76
jiangnanmeiying
这个作者很懒,什么都没留下…
展开
-
SIFT小结
SIFT小结《Distinctive Image Features from Scale-Invariant Keypoints》 David G,Lowe 1.介绍:特征提取过程:1,尺度空间极值检测。2,特征点定位。(包括去除不稳定的点)。3,特征点的方向赋值。4,特征点描述子生成。2.极值点检测:尺度空间由输入图像和高斯函数卷积产生。尺度空间的极值点由高斯差分函数与图像卷原创 2009-10-21 21:48:00 · 3525 阅读 · 1 评论 -
彩色图像分割
彩色空间分割彩色空间分割是基于单色图像(灰度图)分割技术在不同颜色通道上实现的。灰度图分割技术常见的有:直方图阀值化、特征聚类、边缘检测、基于区域的、模糊技术、神经网络等。图像分割有公式化的定义(查文献)。图像分割本质上是一个心理学感知的问题,不会纯粹受分割方法不同的影响。灰度图的分割方法都是基于区域像素的非连续性或相似性。基于非连续性的方法主要是为了检测孤立的点、边缘、线(灰度突然变化的原创 2009-10-24 20:20:00 · 6670 阅读 · 2 评论 -
基于内容的图像检索(CBIR)会是下一个热门研究领域吗?(一)
基于内容的图像检索(CBIR)会是下一个热门研究领域吗?(一)在我们使用搜索引擎时,会在搜索选项上看到图片这个选项,我曾经用过几次,但是感觉不是做的很好,一是图片的量少,另一个是图片与我想搜索的内容有很多差异。网页搜索是基于文本的搜索,本身就是语义的一个直接表达,在文本中得到了直接的体现,所以搜索的技术相对比较简单,经过这几年的发展已经挺成熟了(至少在使用上是这样的感觉)。图片的搜索相对起步较原创 2009-10-26 21:36:00 · 1878 阅读 · 0 评论 -
SURF小结
SURF: speed up robust featureSURF特点:1.使用积分图像完成图像卷积(相关)操作,2,使用Hessian矩阵检测特征值;3,使用基于分布的描述符(局部信息)。兴趣点检测相关研究:1998 Lindberg介绍自动尺度选择的概念,允许检测图像中的兴趣点在它们的特征尺度上。他实验了Hessian矩阵的行列式和Laplacian(和矩阵的迹一致)检测团状原创 2009-11-14 22:20:00 · 5223 阅读 · 1 评论