opencv
文章平均质量分 63
jiangnanmeiying
这个作者很懒,什么都没留下…
展开
-
Opencv之KMEANS篇
Opencv之KMEANS篇Opencv中的K-means适用于数据预处理,但图像分割的消耗的时间太长并且效果不怎么好,使用空间信息后,图像的分割后受空间的影响很大(同一类的数据如果分布较远,不是高斯型的,就会错分),因为图像分割本身要求数据是呈超球体(高斯类)分布。K-means得到的是线性判决面,因为算法使用的准则函数是最小均方误差,相当于不同类别间求最小二乘直线拟合。这是一个局限点原创 2009-11-22 14:51:00 · 9870 阅读 · 2 评论 -
OPENCV之EM算法篇
OPENCV之EM算法篇EM算法是求解最大似然函数极值的一种解法,使用的是迭代求解的方法,并且保证收敛。EM算法的应用相当广泛,包括混合高斯模型的求解,隐马尔科夫模型的求解,最大后验概率模型的求解等。最常用的是混合高斯模型的求解,把混合概率密度分解为一系列的高斯分量之和。关于EM算法的具体流程可参考网上,个人推荐一个介绍的不错的,《pattern recognition and mach原创 2009-11-26 08:45:00 · 6520 阅读 · 2 评论 -
Opencv之meanshift篇
Opencv之meanshift篇本文主要是介绍了OPENCV里的meanshift分割函数cvPyrMeanShiftFiltering函数。关于算法的详细叙述可参考《Mean shift: a robust approach toward feature space analysis》D,comaniciu 2003.该函数基本参照上文所描述的算法流程编写的。在opencv实现里加入原创 2009-11-26 08:48:00 · 12224 阅读 · 0 评论 -
Opencv之PCA篇
Opencv之PCA篇PCA(principal component analysis)翻译过来就是主分量分析,是一种流行的数据降维方法。通过数据降维可以实现数据的压缩,同时方便数据分析和提高算法的处理速度。PCA的原理就是通过正交变换,最大化样本协方差阵的对角元素,最小化非对角元素。具体的介绍可以参考Shlens, J., A tutorial on principal compone原创 2009-11-25 12:31:00 · 7650 阅读 · 3 评论