usaco training 3.4.3 fence9 题解

Electric Fence题解
Don Piele

In this problem, `lattice points' in the plane are points with integer coordinates.

In order to contain his cows, Farmer John constructs a triangular electric fence by stringing a "hot" wire from the origin (0,0) to a lattice point [n,m] (0<=;n<32,000, 0<m<32,000), then to a lattice point on the positive x axis [p,0] (0<p<32,000), and then back to the origin (0,0).

A cow can be placed at each lattice point within the fence without touching the fence (very thin cows). Cows can not be placed on lattice points that the fence touches. How many cows can a given fence hold?

PROGRAM NAME: fence9

INPUT FORMAT

The single input line contains three space-separated integers that denote n, m, and p.

OUTPUT FORMAT

A single line with a single integer that represents the number of cows the specified fence can hold.

描述

在本题中,格点是指横纵坐标皆为整数的点。

为了圈养他的牛,农夫约翰(Famer John)建造了一个三角形的电网。他从原点(0,0)牵出一根通电的电线,连接格点(n,m)(0<=n<32000,0<m<32000),再连接格点(p,0)(p>0),最后回到原点。

牛可以在不碰到电网的情况下被放到电网内部的每一个格点上(十分瘦的牛)。如果一个格点碰到了电网,牛绝对不可以被放到该格点之上(或许Famer John会有一些收获)。那么有多少头牛可以被放到农夫约翰的电网中去呢?

格式

PROGRAM NAME: fence9

INPUT FORMAT:

(file fence9.in)

输入文件只有一行,包含三个用空格隔开的整数:n,m和p。

OUTPUT FORMAT:

(file fence9.out)

输出文件只有一行,包含一个整数,代表能被指定的电网包含的牛的数目。

SAMPLE INPUT

7 5 10

SAMPLE OUTPUT

20


       前言:咳咳,正当我向大视野、PKU等众多题库征战的时候,我猛然发现最最经典的USACO原题我竟然还没有刷完!!!于是最近我要把这个刷到5、6版,并且会陆续写一些题解。(水题就不解释了)

预备知识:皮克定理

一张方格纸上,上面画着纵横两组平行线,相邻平行线之间的距离都相等,这样两组平行线的交点,就是所谓 格点。如果取一个格点做原点O,如图1,取通过这个格点的横向和纵向两直线分别做横坐标轴OX和纵坐标轴OY,并取原来方格边长做单位长,建立一个坐标系。这时前面所说的格点,显然就是纵横两坐标都是整数的那些点。如图1中的O、P、Q、M、N都是格点。由于这个缘故,我们又叫格点为整点。
一个多边形的顶点如果全是格点,这多边形就叫做格点多边形。有趣的是,这种格点多边形的面积计算起来很方便,只要数一下图形边线上的点的数目及图内的点的数目,就可用公式算出。
这个公式是皮克(Pick)在1899年给出的,被称为“皮克定理”,这是一个实用而有趣的定理。
给定顶点坐标均是整点(或正方形格点)的简单多边
a=39,b=14,s=45

a=39,b=14,s=45

形,皮克定理说明了其面积S和内部格点数目a、边上格点数目b的关系:
S=a+b ÷2-1。
(其中a表示多边形内部的点数,b表示多边形边界上的点数,S表示多边形的面积)
-----------------------------------------以上摘自百度百科---------------------------------------------

对于这道题目,肯定很多人开始都束手无策,但是看到这个公式后就豁然开朗。我们先求出这个三角形的面积和位于三角形边上的点(GCD来求),在反向套用皮克定理,求出其内部的点。


代码:

{
ID:juan1973
LANG:PASCAL
PROG:fence9
}
var
  n,m,p,on_the_line,left_up,right_up,ans:longint;
function gcd(a,b:longint):longint;
begin
  if a mod b=0 then exit(b);
  exit(gcd(b,a mod b));
end;
begin
  assign(input,'fence9.in');
  assign(output,'fence9.out');
  reset(input);
  rewrite(output);

  readln(n,m,p);
  if n=0 then left_up:=m else left_up:=gcd(n,m);
  if abs(n-p)>0 then right_up:=gcd(abs(n-p),m) else right_up:=m;
  on_the_line:=left_up+right_up+p;
  ans:=(p*m-on_the_line) div 2+1;
  writeln(ans);

  close(input);
  close(output);
end.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值