APS(高级计划与排程)系统作为企业智能制造的核心引擎,通过整合需求预测、产能规划、生产调度、物料管理及数据分析等模块,构建了覆盖产品全生产流程的“感知-决策-执行-优化”闭环体系。
精准需求预测
APS系统通过构建需求特征数据模型,整合历史销售、市场趋势、客户订单、促销活动、供应链动态、舆情及环境数据等数据源,结合多种先进的算法架构,实现需求规律深度挖掘与实时修正,并依托事件驱动预测修正机制,在突发产品需求事件发生时,短时间内完成模型热更新,同步生成需求变更影响分析报告,推动库存周转率提高、滞销品占比下降、紧急订单响应周期缩短、供应链综合成本降低,为企业构建需求精准感知-产能弹性匹配-库存零冗余的智能决策闭环,从源头保障生产计划科学性。
资源配置更高效
1.构建精准的生产资源约束
基于生产要素全要素建模理念,对设备(加工能力、故障率、OEE动态指标)与人员(技能矩阵、工时效率、资质认证)两个在生产加工过程中最重要的有限资源进行数字化抽象,形成生产资源数字孪生体,将实际生产中的资源规范化、可视化。
实时采集设备状态、异常不可用时间、维保等关键指标,结合人员技能与任务特征数据匹配度,构建评估矩阵,准确的分配产品各道工序中的资源配置。
2.有限产能排程引擎,实现资源最优分配
采用有限产能排程技术,以资源能力边界为约束条件,产品需求交期为最终目标,通过遗传算法、退火算法等先进理论推动,在设备利用率、人员负荷、交期达成率等多目标间动态寻优,实现任务-资源-时间三维空间的精准调度。
智能匹配逻辑:
设备-任务分级匹配:基于设备OEE与任务工艺要求的关联分析,在算法优化过程中将匹配度最高的多个生产资源优先分配到对应工序中,并在此基础上继续验证在多个工序都需要同一个资源的情况下,平衡各道工序的资源实际使用情况,保证资源的最大利用率。
人员-工艺定向委派:根据人员技能矩阵与工序复杂度,将复杂工艺、特定工艺任务定向委派至高级技工/专家级员工,确保工艺执行零缺陷。
3.资源利用率与人员效率双提升
通过算法引擎在迭代过程中动态瓶颈识别与产能均衡化调度,消除设备空转时间与任务等待队列,提高设备利用率,保证在设备可执行工时内达到效能最大化。
基于技能-任务匹配度优化与工时动态平衡,减少人员技能错配与负荷不均,从而使人员效率获得提升,优化生产周期内的人员工作强度分配。
4.异常的快速相应
当突发订单插单或设备故障等生产异常时,系统快速相应并重新生成在当下条件的排程结果,提供替代方案并推送资源负荷预警,确保生产连续性。
物料需求精准计算:让供应链协同更顺畅
1.全要素驱动的物料需求智能计算
突破传统BOM的静态层级结构,构建模块化BOM+工艺路线关联,支持多版本BOM实时切换、产品标准工艺工序临时性调整、替代物料智能推荐。
以订单交付日期与工序级资源约束为双引擎,结合设备负荷、人员技能、模具/工装可用性等约束条件,生成以排程结果为导向的分时段、分车间、分供应商的精准物料需求计划,确保计划可执行性,保证生产过程中的物料需求。
当出现订单需求数量增减、工艺调整、供应商异常时,系统在分钟级内完成需求网络级联更新,同步推送影响范围分析报告,支撑生产现场的快速决策。
2.信息共生与价值提升
向核心供应商开放需求计划、库存水位、产能负荷等数据看板,支持供应商基于企业生产节拍自主调整排产计划、备货策略,实现需求预测-生产排程-供应响应的实时联动。
打通运输在途数据与仓储出入库数据,实现物料全生命周期追踪,消除库存信息滞后与收发货异常。
通过物料需求精准匹配与供应链动态协同,消除冗余库存与呆滞物料,推动库存周转率提升,释放现金流用于技术研发与市场拓展。
基于全链条计划透明化与供应商响应提速,实现订单交付周期压缩、准时交付率突破,支撑企业从成本竞争转向交付能力竞争,赢得高附加值订单与长期客户合作。
实时数据驱动:让生产管控更透明
1.实时数据穿透,构建数字镜像
设备互联:IoT直连机床、质检设备,实时采集加工参数、设备状态等底层数据,替代人工巡检。
系统集成:打通MES/ERP,同步订单、工艺、库存信息,形成生产全要素实时镜像。
异常智能预警:基于规则引擎+AI模型,动态监测设备停机、良率异常等场景,自动触发分级预警(短信/锁机/停线),推动异常处理前置化。
2.数据驱动决策,精准定位瓶颈
通过指挥大屏实时呈现设备OEE、计划达成率等核心指标与异常热力图,快速锁定资源冲突、工艺短板,实现全局掌控。
系统自动关联异常数据、操作日志,通过关联规则挖掘定位设备老化、工艺偏差等深层原因,输出优化建议。
基于实时反馈动态调整排产,计划执行偏差率极低,支撑订单准时交付与资源高效利用,打造零延迟、零偏差、零浪费的敏捷制造体系。