- 博客(54)
- 资源 (6)
- 收藏
- 关注

原创 最新目标检测算法回顾2022笔记
目标检测算法回顾2022笔记[附PPT]总目录篇章1:目标检测的应用与需求篇章2:目标检测的定义与挑战篇章3:目标检测损失函数的进展篇章4:目标检测IOU的发展历程篇章5:目标检测评价指标及数据集篇章6: 目标检测算法的发展概览篇章7:目标检测传统算法的发展篇章8:基于anchor based的目标检测算法发展之two-stage篇篇章9:基于anchor based的目标检测算法发展之one-stage篇[篇章10:基于anchor free的目标检测算法发展](https://blog.csdn.net
2022-05-23 19:47:46
4797
66

原创 点云数据理解(PointNet实现第3步)
PointNet实现第3步——点云理解1.三维数据的表现形式三维数据的表述形式一般分为4种: 图来源于斯坦福大学在读博士生祁芮中台:点云上的深度学习及其在三维场景理解中的应用三维数据形式简介图例point clouds(点云)即三维空间中点的集合;由N个D维的点组成,当D=3则可表示为三维坐标点(x,y,z) ,每一点都是由某个(xyz)位置决定的,...
2020-08-22 17:57:36
6711
16

原创 PointNet理解(PointNet实现第4步)
PointNet第4步——PointNet理解前面,我们讲到了点云的挑战,针对点云的挑战,PointNet论文提出了下面的解决方案。一、点云的解决方案1.1置换不变性设计的网络必须满足置换不变性,N个数据就有N!个置换不变性。而对称函数可以满足上述置换不变性,如下:图来源于斯坦福大学在读博士生祁芮中台:点云上的深度学习及其在三维场景理解中的应用直接对数据做对称性操作,虽然满...
2020-08-19 17:49:22
7532
2

转载 聊天中文语料库对比(附上各资源链接)
聊天中文语料库对比主要中文聊天语料库如下:chatterbot豆瓣多轮PTT八卦语料青云语料电视剧对白语料贴吧论坛回帖语料微博语料小黄鸡语料共8个公开闲聊常用语料和短信,白鹭时代问答等语料。并对8个常见语料的数据进行了统一化规整和处理,达到直接可以粗略使用的目的。使用该项目,即可对所有的聊天语料进行一次性的处理和统一下载,不需要到处自己去搜集下载和分别处理各种不同的格式...
2020-04-10 23:59:20
39601
2
原创 目标检测算法回顾之思考与总结
目标检测算法回顾之思考与总结总结思考作业说明:本文仅供学习总结从前面对目标检测算法的回顾来看,我们可以看出目标检测算法实际上从繁到简(如anchor,nms,iou等是一个有设置到adaptive再到free的一个过程,又如multi-stage到one-stage),从粗到细(如iou和nms考虑更多的细节,比如密集程度,更多的定位信息)而发展的。从部件和训练技巧上来看模型在候选区域的选择由anchor-based到anchor-free,实现了由bounding box学习到bound
2022-05-24 12:30:11
527
原创 目标检测算法回顾之传统算法
传统的目标检测算法总体回顾基于特征基于分割一般流程经典算法Harr+Adaboost流程Harr特征Adaboost算法HOG + SVM概述方法HOG特征的优缺点DPMDPM特征DPM流程DPM vs HOG总结说明:本文仅供学习虽然传统的目标检测方法现在比较少用,但我们认为有必要了解其手工设计的特征,因为现在在工业和医学领域这些手工特征与深度学习方法的融合也带来了不错的效果。当然,我们的汇报仍然是以基于深度学习的方法为主。总体回顾基于传统的目标检测算法主要可以分为基于特征和基于分割两个方向。
2022-05-24 10:22:06
1976
6
原创 目标检测算法回顾之发展概览
目标检测算法的发展时间线发展历史轴(时间轴线图)算法方法概览(思维导图)发展历史轴(时间轴线图)目标检测的算法发展可以追溯到很久之前,这里我根据前两年的综述论文加上这两年的发展也画了两个部分的相关模型发展轴。可以看到,目标检测算法在2012年前均采用传统算法进行处理。在2012年之后随着算力及数据的提升,大量的深度学习模型涌现。最开始的模型主要采用的是以RCNN为首的two-stage目标检测模型。但随着移动端对目标检测效率要求的提高,16年之后模型开始以YOLO为首的one-stage模型为主。但
2022-05-23 21:15:09
2605
1
原创 目标检测算法回顾之评价指标与数据集
目标检测的评价指标与数据集评价指标概述AP与mAP数据集常见数据集两大主流数据集两大标注软件三种常用的标签格式评价指标概述前面说IOU与目标检测评价息息相关,主要是因为目标检测在进行评价比较时会说明对应的IOU阈值。那目前大家一般采用的评价指标有哪些呢?同样,从目标检测的两个要求来看(精度和效率),一般精度大家都会计算各种IOU阈值下的mAP值和F1分数等。mAP的计算依赖于TP,FP,TN,FN等的计算,也就是依赖Precision和Recall来计算的。因为大家或多或少都会接触过Pr和Re的计算,
2022-05-23 21:10:42
419
原创 目标检测算法回顾之损失函数的发展
目标检测总损失函数的发展简要概述分类的损失函数CE lossFocal lossAP lossDR loss定位的损失函数smooth L1 lossBalanced L1 lossKL lossIOU loss简要概述从任务上来看,目标检测的挑战是分类挑战与定位挑战的结合。对于两个挑战的优化,损失函数的发展可以由这个图来概括。不管是分类任务还是定位任务都可能面临样本分布不均匀,数据分布不一致等问题,因此,后面所提出的优化损失函数也包含对这些问题的改善。比如,Focal loss和DR loss,AP
2022-05-23 21:02:20
422
原创 目标检测算法回顾之定义与挑战
目标检测的定义与挑战目标检测任务的地位定义核心问题理想检测器关键挑战从精度角度看挑战从效率角度看挑战目标检测任务的地位目标检测与分类、分割并称为CV的三大主要任务。目标检测可以看出是分类与分割任务的一座过度桥。定义前面我们讲了目标检测的许多应用,那到底什么是目标检测呢?或者说目标检测的任务是什么?目标检测实际上就是找出图像中所有感兴趣的目标(object),并获得这一目标的类别信息和位置信息。核心问题目标检测所面临的核心问题可以概括为3个:大小的多样性同一张图像上可能同时出现多个不同
2022-05-23 20:57:39
715
原创 目标检测算法回顾之应用场景篇
目标检测应用场景目录应用场景总结目录第一部分我们主要回答两个问题:目标检测在实际中有哪些应用以及为什么我们需要研究它的原因。应用场景在我们日常生活中有哪些可以想到的目标检测应用呢?比如,我们打卡需要人脸检测,指静脉检测,购物时可以进行商品检测与文本提取,检血时需要细胞检测与病理检测,垃圾分类时使用垃圾检测避免误分类现象等。所以,目标检测不管是在我们的日常生活领域,交通领域,工商业领域还是医学领域中都有着重大的应用。再回到我们日常的校园生活中,我们学校的智能食堂及智能MY PASS门禁系统也
2022-05-23 20:46:11
2107
2
原创 目标检测算法回顾之Anchor free篇章
基于anchor free的目标检测方法(一)背景与定义1.1 anchor-based的特征1.2 anchor的好处?1.3 anchor的局限?1.4 anchor-free 与anchor-based的区别(二)概述(三)早期探索型DenseBox背景(人脸检测任务)检测流程先进思想ground truth定义:多任务学习评价(四)基于关键点系列(源于姿态估计)CornerNet背景总体流程与架构heatmaps是如何找到corner的?embeddings是如何匹配corner的?为什么需要off
2022-05-23 19:29:03
530
原创 目标检测算法回顾之Transformer based篇章
基于Transformer的目标检测方法(一)引言(二)概述(三)发展轴预览(四)CNN-backbone系列4.1 DETR与CNN-based的区别DETR的网络结构DETR的评价4.2 Deformable DETR4.2.0 Deformable DETR对DETR的问题分析与改进思路4.2.1 Deformable DETR的注意力机制4.2.2 Deformable DETR的多尺度4.2.3 Deformable DETR评价4.2.4 Deformable DETR总结4.3 UP-DETR
2022-05-23 16:36:48
682
原创 生成模型与判别模型的区别与理解
一、判别方法与生成方法监督学习方法可分为判别方法和生成方法。判别方法(Discriminative approach)由数据直接学习决策函数Y=f(X)或者条件概率分布P(Y|X)作为预测的模型,即判别模型。判别方法关心的是对于给定的输入X,应该预测什么样的输出Y。基本思想是有限样本条件下建立判别函数,不考虑样本的产生模型,直接研究预测模型。典型的判别模型包括k近邻,感知级,决策树,支持向量机等。生成方法(Generative approach)由数据学习联合概率密度分布P(X,Y),然后由
2020-10-16 10:14:07
6962
原创 目标检测发展与综述
目标检测发展与综述绪论在github上的git主hoya012整理了关于目标检测的相关论文,点击此处可获取原文链接https://github.com/hoya012/deep_learning_object_detection 这里还有关于目标检测综述的相关论文链接 链接1:《Deep Learning for Generic Object Detection A Survey》 来自 <https://blog.csdn.net/weixin_38632246/article/de
2020-08-18 09:53:43
12959
转载 深度学习目标检测的论文集及概述
deep learning object detectionA paper list of object detection using deep learning. I wrote this page with reference to this survey paper and searching and searching..Last updated: 2020/07/17Update log2018/9/18 - update all of recent papers an...
2020-08-16 19:00:40
1276
转载 显著性目标检测代码全汇总!(包含2D、3D、4D以及Video)
显著性目标检测代码全汇总!(包含2D、3D、4D以及Video)转载于极市开发者原创投稿https://mp.weixin.qq.com/s/ZSytEsVSjBU_zjy5YPxPeASOD CNNs-based Read ListIn this repository, we mainly focus on deep learning based saliency methods (2D RGB, 3D RGB-D, Video SOD and 4D Light Field) and provide
2020-08-16 13:05:43
3670
原创 不改源码快速实现labelme.json文件转原图、label图片等文件
不改源码快速实现labelme.json文件转原图、label图片等文件网上找了许多博客,都需要改源码,labelme下的json_to_dataset只能1转1,实在有点麻烦。不过可以通过python代码的遍历文件来代替我们的手转!!!一、预备基础:这里是指你在搭建好环境的基础上(anaconda和labelme),但我这里用的是pycharm和labelme,其实都一样。二、实现过程:Step1:将.json文件全部转移到某一个文件夹下,比如文件夹AStep2:打开p
2020-07-23 15:51:30
441
转载 常规卷积,DW卷积和PW卷积的区别
常规卷积,DW卷积和PW卷积的区别转载于卷积神经网络中的Separable Convolution 卷积神经网络在图像处理中的地位已然毋庸置疑。卷积运算具备强大的特征提取能力、相比全连接又消耗更少的参数,应用在图像这样的二维结构数据中有着先天优势。然而受限于目前移动端设备硬件条件,显著降低神经网络的运算量依旧是网络结构优化的目标之一。本文所述的Separable Convolution就是降低卷积运算参数量的一种典型方法。常规卷
2020-07-17 14:54:50
5697
原创 指静脉识别的背景与调研[机器视觉]
指静脉识别的背景与调研[机器视觉]我实在不想复制太多,这里我吧我之前写的导出为图片Po上来,如果你想要文档也可以留一下你的邮箱之类的。(除了图1.4和1.13,我是直接从数据网站上截图的,其他我都是用WPS画的,相关的数据来源我均有说明)......
2020-07-14 00:05:30
371
9
原创 联动菜单(左右侧菜单)实现【微信小程序】
联动菜单(左右侧菜单)实现【微信小程序】最近为了实现课程设计,也做了一些前端的东西,今天想要做一个联动菜单来实现一些功能。实现了,也来做做笔记。第1步:了解一下左右侧菜单其实简单来讲就是把一个区域分成左右两个部分。关于组件,我觉得可以直接去微信开发文档看。通过代码,我觉得应该是可以理解的。话步多讲,直接上代码。(首先说明一点的是,我还是个刚刚接触前端的小白,可能有些写得不太好得,往各位博友多多指出改进得建议,相互学习)第2步:实现(代码我有注释)在这里插入代码片...
2020-05-17 20:30:48
2014
原创 根据菜单显示不同值【微信小程序】
根据菜单显示不同值【微信小程序】这里我做的是一级的,但其实2,3,4…只需要改变数组就可以了。第一步:我先放一下效果图第2步:实现这里我用的是全前端的实现,没有用后端,这里就会造成代码稍微多一点,运行效率稍微慢一点,但其实只要数据不多就可以用,但是数据多就不还是要用一些后端,对了不给负责给一些后端的同学加锅,我就用全前端的代码来实现2.1wxml第一次接触前端这个东西,觉得有点可爱(●’◡’●),首先当然是从wxml做起这里我先做一下代码的一些说明:picker:从底部弹起的
2020-05-16 21:25:21
896
原创 Geo-CNN中tf_sampling.sh文件解读
Geo-CNN中.sh文件解读如果有说不对的,还请指正。Geo-CNN作者再这里面添加了一些新的Ops.下面是我修改过的一个文件(tf_sampling.sh):看到这个,我觉得应该先来点文件后缀的介绍:接下来一步步理解:先看一下Geo-CNN源码文件好了:nvcc指令nvcc指令可以看一下这篇博客-o选项:-o <file>输出编译后的结果到指定的文件file中。windows下默认编译输出a.exe,而linux则默认是a.out。-o不仅可以指定
2020-05-11 20:52:14
424
原创 tf_sampling_so.so等文件怎么生成(多种tf版本都可的顺利解决方法)
tf_sampling_so.so等文件怎么生成(多种tf版本的解决方法)这里以Geo-CNN的代码为例子,运行时我们可能会出现这样子的错误:忘记截图1.没有.so文件。tf_sampling_so.so: cannot open shared object file: No such file or directory1.1那么.so文件是什么?so即为shared o...
2020-05-03 11:27:54
2570
3
原创 Geo_CNN代码解释与说明
Geo_CNN代码解释与说明1.tf_geoconv.py注释''' tf_geoconv.py注释'''from __future__ import print_functionimport tensorflow as tffrom tensorflow.python.framework import opsimport sysimport osimport numpy ...
2020-04-30 00:49:23
642
2
转载 LTP词性与语义表格(简洁版)
词性标注集 实体识别标注集 依存句法关系类型 语义角色类型 语义依存关系类型 词性标注集 TagDescription含义描述Examplerpronoun代词我们ngeneral noun名词苹果nsgeographical name地名北京wppunctuation标点,。!ksuffix后缀界, 率hprefi...
2020-04-25 00:16:47
1372
原创 NLP笔记2_自定义词性与字典的实现
NLP笔记2_自定义词性与字典的实现怎么实现自定义词性,哎呀愁。看了一篇论文,作者是使用LTP实现的,但是作者没有仔细说明如何实现。在网上也看其他的博客,但是暂时还是找不到相对应较好的解决方法。希望其他博友如果知道,请指点一二。(未来还得继续学习)LTP没有办法实现,我就转向简单的jieba了,想说jieba一点也不结巴。Step1:准备自己的字典为了作业,收集了一些词汇,准备了自...
2020-04-24 15:03:52
718
2
原创 PointNet&PointNet++源码pointnet_util.py理解
PointNet&PointNet++源码pointnet_util.py理解源码:https://github.com/yanx27/Pointnet_Pointnet2_pytorch文件:pointnet_util.pyimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom time imp...
2020-04-24 11:07:07
1447
3
原创 PointNet&PointNet++源码ModelNetDataLoader理解
PointNet&PointNet++源码ModelNetDataLoader理解源码:https://github.com/yanx27/Pointnet_Pointnet2_pytorch文件:ModelNetDataLoader.py#!/usr/bin/env python# -*- coding: utf-8 -*-# 导入第三方库import numpy as n...
2020-04-24 10:38:21
1486
7
原创 Pyltp的安装及初步使用(快捷版,相关下载资源,分词,词性标注与语法分析)
Pyltp的安装第一步:pip install pyltp,如下图所示:报错1:
2020-04-23 22:48:27
435
原创 NLP笔记1_中文分词(数据预处理篇)
NLP笔记1_中文分词(数据预处理篇)如何实现准确并且迅速的中文分词一直是自然语言处理领域研究中的基础。当前主要的分词处理方法:基于字符串匹配的分词方法基于统计的分词方法基于理解的分词方法这三类分词技术代表了当前中文分词的发展方向,它们有着各自的优缺点。基于字符串匹配的分词算法基于字符串匹配的分词是通过构建一个固定的词表,对照这个词表,对输入的问句进行字符串截取和字符...
2020-04-22 23:48:13
1545
图像卡通化工具python版本
2020-05-31
图形识别与颜色识别工具
2020-02-20
zhujiemian.py
2020-02-20
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人