matlab特殊函数

http://ceta.mit.edu/ceta/comp_spec_func/
http://ceta.mit.edu/ceta/

LIST OF PROGRAMS:
 
mbernoa.m (BERNOA) Evaluate a sequence of Bernoulli numbers (method 1).
 mbernob.m (BERNOB) Evaluate a sequence of Bernoulli numbers (method 2).

 meulera.m (EULERA) Evaluate a sequence of Euler numbers (method 1).

 meulerb.m (EULERB) Evaluate a sequence of Euler numbers (method 2).

*****

 mothpl.m (OTHPL) Evaluate a sequence of orthogonal polynomials and their derivatives, including Chebyshev, Laguerre, and Hermite polynomials.

mlegzo.m (LEGZO) Evaluate the nodes and weights for Gauss-Legendre quadrature.

 mlagzo.m (LAGZO) Evaluate the nodes and weights for Gauss-Laguerre quadrature.

 mherzo.m (HERZO) Evaluate the nodes and weights for Gauss-Hermite quadrature.

*****

 mgamma.m (GAMMA) Evaluate the gamma function.

 mlgama.m (LGAMA) Evaluate the gamma function or the logarithm of the gamma function.

 mcgama.m (CGAMA) Evaluate the gamma function with a complex argument.

 mbeta.m (BETA) Evaluate the beta function.

 mpsi.m (PSI) Evaluate the psi function.

 mcpsi.m (CPSI) Evaluate the psi function with a complex argument.

 mincog.m (INCOG) Evaluate the incomplete gamma function.

 mincob.m (INCOB) Evaluate the incomplete beta function.

 *****

 mlpn.m (LPN) Evaluate a sequence of Legendre polynomials and their derivatives with real arguments.

 mclpn.m (CLPN) Evaluate a sequence of Legendre polynomials and their derivatives with complex arguments.

 mlpni.m (LPNI) Evaluate a sequence of Legendre polynomials, their derivatives, and their integrals.

 mlqna.m (LQNA) Evaluate a sequence of Legendre functions of the second kind and their derivatives with restricted real arguments.

 mlqnb.m (LQNB) Evaluate a sequence of Legendre functions of the second kind and their derivatives with nonrestricted real arguments.

 mclqn.m (CLQN) Evaluate a sequence of Legendre functions of the second kind and their derivatives with complex arguments.

 mlpmn.m (LPMN) Evaluate a sequence of associated Legendre polynomials and their derivatives with real arguments.

 mlpmn.m (CLPMN) Evaluate a sequence of associated Legendre polynomials and their derivatives with complex arguments.

 mlqmn.m (LQMN) Evaluate a sequence of associated Legendre functions of the second kind and their derivatives with real arguments.

 mclqmn.m (CLQMN) Evaluate a sequence of associated Legendre functions of the second kind and their derivatives with complex arguments.

 mlpmv.m (LPMV) Evaluate associated Legendre functions of the first kind with an integer order and arbitrary non-negative degree.

 *****

 mjy01a.m (JY01A) Evaluate the zeroth- and first-order Bessel functions of the first and second kinds with real arguments using series and asymptotic expansions.

 mjy01b.m (JY01B) Evaluate the zeroth- and first-order Bessel functions of the first and second kinds with real arguments using polynomial approximations.

 mjyna.m (JYNA) Evaluate a sequence of Bessel functions of the first and second kinds and their derivatives with integer orders and real arguments (method 1).

 mjynb.m (JYNB) Evaluate a sequence of Bessel functions of the first and second kinds and their derivatives with integer orders and real arguments (method 2).

 mcjy01.m (CJY01) Evaluate the zeroth- and first-order Bessel functions of the first and second kinds and their derivatives with complex arguments.

 mcjyna.m (CJYNA) Evaluate a sequence of Bessel functions of the first and second kinds and their derivatives with integer orders and complex arguments (method 1).

 mcjynb.m (CJYNB) Evaluate a sequence of Bessel functions of the first and second kinds and their derivatives with integer orders and complex arguments (method 2).

 mjyv.m (JYV) Evaluate a sequence of Bessel functions of the first and second kinds and their derivatives with arbitrary real orders and real arguments.

 mcjyva.m (CJYVA) Evaluate a sequence of Bessel functions of the first and second kinds and their derivatives with arbitrary real orders and complex arguments (method 1).

 mcjyvb.m (CJYVB) Evaluate a sequence of Bessel functions of the first and second kinds and their derivatives with arbitrary real orders and complex arguments (method 2).

 mcjk.m (CJK) Evaluate the coefficients for the asymptotic expansion of Bessel functions for large orders.

 mcjylv.m (CJYLV) Evaluate Bessel functions of the first and second kinds and their derivatives with a large arbitrary real order and complex arguments.

 mjyzo.m (JYZO) Evaluate the zeros of the Bessel functions of the first and second kinds and their derivatives.

 mjdzo.m (JDZO) Evaluate the zeros of the Bessel functions of the first kind and their derivatives.

 mcyzo.m (CYZO) Evaluate the complex zeros of the Bessel functions of the second kind of order zero and one.

 mlamn.m (LAMN) Evaluate a sequence of lambda functions with integer orders and their derivatives.

 mlamv.m (LAMV) Evaluate a sequence of lambda functions with arbitrary orders and their derivatives.

 *****

 mik01a.m (IK01A) Evaluate the zeroth- and first-order modified Bessel functions of the first and second kinds with real arguments.

 mik01b.m (IK01B) Evaluate the zeroth- and first-order modified Bessel functions of the first and second kinds with real arguments.

 mikna.m (IKNA) Evaluate a sequence of modified Bessel functions of the first and second kinds and their derivatives with integer orders and real arguments (method 1).

 miknb.m (IKNB) Evaluate a sequence of modified Bessel functions of the first and second kinds and their derivatives with integer orders and real arguments (method 2).

 mcik01.m (CIK01) Evaluate the zeroth- and first-order modified Bessel functions of the first and second kinds and their derivatives with complex arguments.

 mcikna.m (CIKNA) Evaluate a sequence of modified Bessel functions of the first and second kinds and their derivatives with integer orders and complex arguments (method 1).

 mciknb.m (CIKNB) Evaluate a sequence of modified Bessel functions of the first and second kinds and their derivatives with integer orders and complex arguments (method 2).

 mikv.m (IKV) Evaluate a sequence of modified Bessel functions of the first and second kinds and their derivatives with arbitrary real orders and real arguments.

 mcikva.m (CIKVA) Evaluate a sequence of modified Bessel functions of the first and second kinds and their derivatives with arbitrary real orders and complex arguments.

 mcikvb.m (CIKVB) Evaluate a sequence of modified Bessel functions of the first and second kinds and their derivatives with arbitrary real orders and complex arguments.

mciklv.m (CIKLV) Evaluate modified Bessel functions of the first and second kinds and their derivatives with a large arbitrary real order and complex arguments.

mch12n.m (CH12N) Evaluate a sequence of Hankel functions of the first and second kinds and their derivatives with integer orders and complex arguments.

 *****

 mitjya.m (ITJYA) Evaluate the integral of Bessel functions J0(t) and Y0(t) from 0 to x using series and asymptotic expansions.

 mitjyb.m (ITJYB) Evaluate the integral of Bessel functions J0(t) and Y0(t) from 0 to x using polynomial approximations.

 mittjya.m (ITTJYA) Evaluate the integral of [1-J0(t)]/t from 0 to x and Y0(t)/t from x to infinity using series and asymptotic expansions.

 mittjyb.m (ITTJYB) Evaluate the integral of [1-J0(t)]/t from 0 to x and Y0(t)/t from x to infinity using polynomial approximations.

 mitika.m (ITIKA) Evaluate the integral of modified Bessel functions I0(t) and K0(t) from 0 to x using series and asymptotic expansions.

 mitikb.m (ITIKB) Evaluate the integral of modified Bessel functions I0(t) and K0(t) from 0 to x using polynomial approximations.

 mittika.m (ITTIKA) Evaluate the integral of [1-I0(t)]/t from 0 to x and K0(t) from x to infinity using series and asymptotic expansions.

 mittikb.m (ITTIKB) Evaluate the integral of [1-I0(t)]/t from 0 to x and K0(t) from x to infinity using polynomial approximations.

 ****

 msphj.m (SPHJ) Evaluate a sequence of spherical Bessel functions of the first kind and their derivatives with integer orders and real arguments.

 msphy.m (SPHY) Evaluate a sequence of spherical Bessel functions of the second kind and their derivatives with integer orders and real arguments.

 mcsphjy.m (CSPHJY) Evaluate a sequence of spherical Bessel functions of the first and second kinds and their derivatives with integer orders and complex arguments.

 mrctj.m (RCTJ) Evaluate a sequence of Riccati-Bessel functions and their derivatives of the first kind.

 mrcty.m (RCTY) Evaluate a sequence of Riccati-Bessel functions and their derivatives of the second kind.

 msphi.m (SPHI) Evaluate a sequence of modified spherical Bessel functions of the first kind and their derivatives with integer orders and real arguments.

 msphk.m (SPHK) Evaluate a sequence of modified spherical Bessel functions of the second kind and their derivatives with integer orders and real arguments.

 mcsphik.m (CSPHIK) Evaluate a sequence of modified spherical Bessel functions of the first and second kinds and their derivatives with integer orders and complex arguments.

 *****

 mklvna.m (KLVNA) Evaluate the Kelvin functions and their derivatives using series and asymptotic expansions.

 mklvnb.m (KLVNB) Evaluate the Kelvin functions and their derivatives using polynomial approximations.

 mklvnzo.m (KLVNZO) Evaluate the zeros of the Kelvin functions and their derivatives.

 *****

mairya.m (AIRYA) Evaluate the Airy functions and their derivatives by means of Bessel functions.

 mairyb.m (AIRYB) Evaluate the Airy functions and their derivatives using the series and asymptotic expansions.

 mitairy.m (ITAIRY) Evaluate the integral of the Airy functions.

mairyzo.m (AIRYZO) Evaluate the zeros of Airy functions and their derivatives.

 *****

mstvh0.m (STVH0) Evaluate the zeroth-order Struve function.

 mstvh1.m (STVH1) Evaluate the first-order Struve function.

 mstvhv.m (STVHV) Evaluate the Struve functions with an arbitrary order.

 mitsh0.m (ITSH0) Evaluate the integral of Struve function H0(t) from 0 to x.

 mitth0.m (ITTH0) Evaluate the integral of H0(t)/t from x to infinity.

 mstvl0.m (STVL0) Evaluate the zeroth-order modified Struve function.

 mstvl1.m (STVL1) Evaluate the first-order modified Struve function.

 mstvlv.m (STVLV) Evaluate the modified Struve function with an arbitrary order.

 mitls0.m (ITSL0) Evaluate the integral of modified Struve function L0(t) from 0 to x.

 *****

 mhygfx.m (HYGFX) Evaluate the hypergeometric function with real arguments.

 mhygfz.m (HYGFZ) Evaluate the hypergeometric function with complex arguments.

 *****

 mchgm.m (CHGM) Evaluate the confluent hypergeometric function M(a,b,x) with real arguments.

 mcchg.m (CCHG) Evaluate the confluent hypergeometric function M(a,b,z) with complex arguments.

 mchgu.m (CHGU) Evaluate the confluent hypergeometric function U(a,b,x) with real arguments.

 *****

 mpbdv.m (PBDV) Evaluate a sequence of parabolic cylinder functions Dv(x) and their derivatives.

 mpbvv.m (PBVV) Evaluate a sequence of parabolic cylinder functions Vv(x) and their derivatives.

 mpbwa.m (PBWA) Evaluate parabolic cylinder functions W(a,+/-x) and their derivatives.

 mcpbdn.m (CPBDN) Evaluate a sequence of parabolic cylinder functions Dn(z) and their derivatives for complex arguments.

 *****

mcva1.m (CVA1) Evaluate a sequence of characteristic values for the Mathieu and modified Mathieu functions.

 mcva2.m (CVA2) Evaluate a specific characteristic value for the Mathieu and modified Mathieu functions.

 mfcoef.m (FCOEF) Evaluate the expansion coefficients for the Mathieu and modified Mathieu functions.

 mmtu0.m (MTU0) Evaluate the Mathieu functions and their derivatives.

 mmtu12.m (MTU12) Evaluate the modified Mathieu functions of the first and second kinds and their derivatives.

 *****

msegv.m (SEGV) Evaluate a sequence of characteristic values for spheroidal wave functions.

 msdmn.m (SDMN) Evaluate the expansion coefficients d_k^mn for spheroidal wave functions.

 mscka.m (SCKA) Evaluate the expansion coefficients c_2k^mn for spheroidal wave functions (method 1).

 msckb.m (SCKB) Evaluate the expansion coefficients c_2k^mn for spheroidal wave functions (method 2).

 maswfa.m (ASWFA) Evaluate the angular spheroidal wave functions of the first kind (method 1).

 maswfb.m (ASWFB) Evaluate the angular spheroidal wave functions of the first kind (method 2).

 mrswfp.m (RSWFP) Evaluate the radial prolate spheroidal wave functions of the first and second kinds.

 mrswfo.m (RSWFO) Evaluate the radial oblate spheroidal wave functions of the first and second kinds.

 mlpmns.m (LPMNS) Evaluate a sequence of the associated Legendre functions of the first kind and their derivatives with real arguments for a given order.

 mlqmns.m (LQMNS) Evaluate a sequence of the associated Legendre functions of the second kind and their derivatives with real arguments for a given order.

 *****

 merror.m (ERROR) Evaluate the error function.

 mcerror.m (CERROR) Evaluate the error function with a complex argument.

 *****

 mfcs.m (FCS) Evaluate the Fresnel Integrals.

 mffk.m (FFK) Evaluate the modified Fresnel integrals.

 mcerzo.m (CERZO) Evaluate the complex zeros of the error function.

 mfcszo.m (FCSZO) Evaluate the complex zeros of the Fresnel Integrals.

 *****

 mcisia.m (CISIA) Evaluate the cosine and sine integrals using their series and asymptotic expansions.

 mcisib.m (CISIB) Evaluate the cosine and sine integrals using their rational approximations.

 *****

 mcomelp.m (COMELP) Evaluate the complete elliptic integrals of the first and second kinds.

 melit.m (ELIT) Evaluate the incomplete elliptic integrals of the first and second kinds.

 melit3.m (ELIT3) Evaluate the complete and incomplete elliptic integrals of the third kind.

 mjelp.m (JELP) Evaluate the Jacobian elliptic functions.

 *****

 me1xa.m (E1XA) Evaluate the exponential integral E1(x) using its polynomial approximations.

 me1xb.m (E1XB) Evaluate the exponential integral E1(x) using its series and continued fraction expressions.

 me1z.m (E1Z) Evaluate the exponential integral E1(z) for complex arguments.

 menxa.m (ENXA) Evaluate a sequence of exponential integrals En(x) (method 1).

 menxb.m (ENXB) Evaluate a sequence of exponential integrals En(x) (method 2).

 meix.m (EIX) Evaluate the exponential integral Ei(x).

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值