BZOJ 1085 SCOI 2005 骑士精神 IDA*

题目大意:有一张5*5的棋盘,上面有12和黑棋还有12个白棋。问最少多步可以到达目标状态。


思路:搜索+剪枝。至于剪枝我就用ID+A*的组合了,因为都不难想,估价函数就是当前图和目标图有多少个方块不一样。如果当前步数+估价大于当前迭代加深的层数就退出。


CODE:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int dx[] = {0,1,1,2,2,-1,-1,-2,-2};
const int dy[] = {0,2,-2,1,-1,-2,2,-1,1};

int cases;
char src[10][10],aim[10][10];

void Pretreatment()
{
	for(int i = 1; i <= 5; ++i)
		aim[1][i] = '1',aim[5][i] = '0';
	for(int i = 2; i <= 5; ++i)
		aim[2][i] = '1';
	aim[3][4] = aim[3][5] = aim[4][5] = '1';
	for(int i = 1; i <= 4; ++i)
		aim[4][i] = '0';
	aim[3][1] = aim[3][2] = aim[2][1] = '0'; 
	aim[3][3] = '*';
}

bool IDA_(int deep,int max_deep)
{
	int difference = 0;
	int x,y;
	for(int i = 1; i <= 5; ++i)
		for(int j = 1; j <= 5; ++j) {
			if(src[i][j] == '*')
				x = i,y = j;
			difference += (src[i][j] != aim[i][j]);
		}
	if(!difference)	return true;
	if(difference - 1 + deep > max_deep)	return false;
	for(int i = 1; i <= 8; ++i) {
		int fx = x + dx[i];
		int fy = y + dy[i];
		if(fx <= 0 || fy <= 0 || fx > 5 || fy > 5)	continue;
		swap(src[x][y],src[fx][fy]);
		if(IDA_(deep + 1,max_deep))
			return true;
		swap(src[x][y],src[fx][fy]);
	}
	return false;
}

int main()
{
	Pretreatment();
	for(cin >> cases; cases; --cases) {
		for(int i = 1; i <= 5; ++i)
			scanf("%s",src[i] + 1);
		bool flag = false;
		for(int i = 0; i <= 15 && !flag; ++i) {
			if(IDA_(0,i)) {
				flag = true;
				printf("%d\n",i);
			}
		}
		if(!flag)	puts("-1");
	}
	return 0;
}


题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值